Skip to main content

Potential Use of Soil Microbial Community in Agriculture

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

Microbes can be exploited as low input technology for sustainable crop production and ecosystem conservation. About 2/3rd of the cultured population constitute plant-growth-promoting rhizobacteria (PGPR) which exhibit both direct and indirect mechanism of plant growth stimulation and are implicated in the bioremediation and biocontrol. This chapter highlights the diversity of microorganism based on their ecological distribution, physiology/morphology and functioning. The survival efficiency of a microorganism with its host plants depends on the type and age of the plants. The amount and composition of root exudates are modulated by edaphic and environmental factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews J (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  PubMed  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore – producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of ground nut. Curr Sci 81(6):673–677

    Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  • Balachandar D, Kumar K, Arulmozhiselvan KS (2005) Influence of combined nitrogen on nitrogen transfer efficiency of immobilized cyanobacteria to rice seedlings. Ind J Microbiol 45:257–260

    CAS  Google Scholar 

  • Balser TC, Kinzig A, Firestone MK (2002) Linking soil microbial communities and ecosystem functioning. Chapter 12. In: Kinzig A, Pacala S, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton

    Google Scholar 

  • Bedmar EJ, Robles EF, Delgado MJ (2005) The complete denitrification pathway of the symbiotic, nitrogen fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans 33:141–144

    Article  PubMed  CAS  Google Scholar 

  • Benítez T, Rincón Ana M, Carmen LM, Antonio CC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant dependent genotypic and phenotypic diversity of antagonistic Rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya M, Chaudhuri MA (1995) Heavy metal (Pb 2+ and Cd 2+) stress induced damages in Vigna seedlings and possible involvement of phytochelation like substances in mitigation of heavy metal stress. Indian J Environ Bull 33:236–238

    Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmunn JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Charest MH, Beauchamp CJ, Antoun H (2005) Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum. FEMS Microbiol Ecol 52:219–227

    Article  PubMed  CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Rietz E, Sauerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biol Biochem 25:301–309

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. American Phytopathological Society Press, Minnesota, p 278

    Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  PubMed  Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 154:211–217

    Article  CAS  Google Scholar 

  • Deshmukh AM (1998) Biofertilizers: an overview. Ecol Cons 4(1–2):73–78

    CAS  Google Scholar 

  • Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschutz. Schrreihe Dtsch Phytomed Ges 8:17–31

    CAS  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • FAO (1995) Integrated plant nutrition systems. In: Dudal R, Roy RN (eds) FAO Fertilizer and Plant Nutrition Bulletin No. 12, Rome, FAO, pp 426

    Google Scholar 

  • Fliessbach A, Martens R, Reber HH (1994) Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol Biochem 26:1201–1205

    Article  Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Fuller RC, Baer CF, Travis J (2005) How and when selection experiments might actually be useful. Integrative Comparative Biol 45:391–404

    Google Scholar 

  • Fürnkranz M, Müller H, Berg G (2009) Characterization of plant growth promoting bacteria from crops in Bolivia. J Plant Dis Prot 116(4):149–155

    Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • González-López J (1992) Microorganismos diazotrofos asociados a raíces de plantas no leguminosas. In: González-López J, Lluch C (eds) Interacción Planta-Microorganismo: Biología del Nitrógeno. Rueda, Madrid, Spain, pp 71–96

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001) Effect of metal ions on growth, protein and siderophore production by Pseudomonas aeruginosa (GRC1). Indian J Exp Biol 39(12): 1318–1321

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Heijden MGAV, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogenfixing grass endophytes. J Biotechnol 106:169–178

    Article  PubMed  CAS  Google Scholar 

  • Ilyas N, Bano A (2010) Azospirillum strains isolated from roots and rhizosphere soil of wheat (Triticum aestivum L.) grown under different soil moisture conditions. Biol Fertil Soil 46:393–406

    Article  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jeyarajan R, Nakkeeran S (2000) Exploitation of microorganisms and viruses as biocontrol agents for crop disease mangement. In: Upadhyay et al. (eds) Biocontrol Potential and their Exploitation in Sustainable agriculture. Kluwer Academic/Plenum Publishers, USA, pp 95–116

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores by plant growth promoter rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32:188–192

    Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofman D, Kempf H-J, van Pée KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84:37–45

    Article  Google Scholar 

  • Maheshwari DK (ed) (2010) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer, Berlin

    Google Scholar 

  • Mishra Upasana, Singh BV, Dolly W (2005) Biofertilizers and other bionutrients for sustainable rice production. Indian Farming 54(10):11–14

    Google Scholar 

  • Morrissey JP, Abbas A, Mark L, Cullinane M, O’Gara F (2004) Biosynthesis of antifungal metabolites by biocontrol strains of Pseudomonas. In: Ramos JL (ed) Pseudomonas: biosynthesis of macromolecules and molecular metabolism, vol 3. Kluwer Academic, New York, pp 635–670

    Google Scholar 

  • Muntean V, Åžtef LC, Drgan-Bularda M (2004) Enzymological research on sediments from Mures River. Romanian Biol Sci 1(3-4):104–114

    Google Scholar 

  • Nakkeeran S, Dilantha FWG, Zaki AS (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pest and disease. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 257–296

    Google Scholar 

  • Naz I, Bano A (2009) Biochemical, molecular characterization and growth promoting effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan, 334:199–207

    Google Scholar 

  • Naz I, Bano A, Tamoor-ul-Hassan (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in khyewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. African J Biotech 8(21):5762–5766

    Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  Google Scholar 

  • Pal KK, Gardener MB (2006) Biological control of plant pathogens. The Plant Health Instructor 1–25 doi: 10.1094/PHI-A-2006-1117-02

  • Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophores and enhances growth of Indian mustard (Brassica compestris). Curr Microbiol 51(5):303–309

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds inexudate and extracts of canola seeds treated with ACC deaminase- containing plant growth-promoting bacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Rajendra Prasad, Kumar Dinesh, Shivay YS (2005) Microbes and biological nitrogen fixation, Indian Farming 54(10):16–18

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2000) Reassement of the taxonomic structure of the diazotrophic genus Azoarcus sensu-lato and description of three new genera and species, Azovibrio restrictus gen. nov., Azospira oryzae gen. nov. sp. Nov., and Azonexus funguphilus gen.nov. Int J Syst Evol Microbiol 50:649–659

    Article  PubMed  CAS  Google Scholar 

  • Rodelas B, GonzaÂlez-LoÂpez J, SalmeroÂn V, MartõÂnez-Toledo MV, Pozo C (1998) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viceae isolated from agricultural soils in Spain. Appl Soil Ecol 8:51–60

    Article  Google Scholar 

  • Sandaa RA, Enger O, Torsvik V (1999) Abundance and diversity of Archea in heavy metal contaminated soils. Appl Environ Microbiol 65:3293–3297

    PubMed  CAS  Google Scholar 

  • Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML, Kennedy IR (2011) Importance of biofilm formation in plant growth promoting rhizobacterial action. Microbiol Monographs 18:81–95

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technol 69:167–179

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interaction with beneficial plant associated microbes. Annu Rev Phytopathol 37:473–491

    Article  PubMed  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (2002) Antibiotic production by soil and rhizosphere microbes in situ. pp 636–647. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ and Stetzenbach LD (eds) Manual of Environmental Microbiology, 2nd edn. ASM Press, Washington DC, pp 1138

    Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotophes. Bioresour Technol 97:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248

    Article  CAS  Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Joseph W, Kloepper, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress Trends in Plant Science 14(1):1–4

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingworth S, Orgambide G, de Bruijn F, Stolzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Bano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ilyas, N., Bano, A. (2012). Potential Use of Soil Microbial Community in Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_3

Download citation

Publish with us

Policies and ethics