Skip to main content

The Impact of Mycorrhizosphere Bacterial Communities on Soil Biofunctioning in Tropical and Mediterranean Forest Ecosystems

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

Mycorrhizal fungi constitute a key functional group of soil biota that greatly contribute to productivity and sustainability of terrestrial ecosystems. The benefits of mycorrhizal symbiosis to the host plant have usually been considered as a result of closed relationships between the host plant and the fungal symbiont. However, the extramatrical mycelium provides an increased area for interactions with other soil microorganisms by enhancing the development of the host plant root systems. Mycorrhizal fungi act as a bridge connecting the rhizosphere to the bulk soil and, through an active development of extraradical mycelium into the soil, this soil compartment (mycorrhizosphere) extends root–fungal interactions with soil microbial communities. Interactions within the mycorrhizosphere microbial community are of special interest because some microorganisms associated with mycorrhiza may complement mycorrhizal activities. The purpose of this chapter is to outline the mycorrhizosphere interactions between ectomycorrhizal fungi associated with forest tree species and soil microflora of potentially synergistic properties that lead to stimulation of plant growth. By focussing on the ectomycorrhizal symbiosis associated with Tropical and Mediterranean tree species, we will review the global effects of ectomycorrhizal symbiosis on the functional diversity of soil microflora and in particular, the interactions between ectomycorrhizal fungi and some plant-growth-promoting rhizobacteria. This review will focus on the interactions between ectomycorrhizal fungi and soil microflora leading to a sustainable microbial complex ecosystem with high efficiency against phosphorus mobilization and transferring phosphorus from the soil organic matter or from soil minerals to the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112:61–68

    Article  CAS  Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952–1966

    Article  PubMed  CAS  Google Scholar 

  • Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth dependent. Microb Ecol 50:350–359

    Article  PubMed  Google Scholar 

  • Barker WW, Welch SA, Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington, pp 391–428

    Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    CAS  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Bernard M, Mouyna I, Dubreucq G, Debeaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latge JP (2002) Characterization of a cell wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148:2819–2829

    PubMed  CAS  Google Scholar 

  • Boyce A, Walsh G (2007) Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. J Biotechnol 132:82–87

    Article  PubMed  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Coello P (2002) Purification and characterization of secreted acid phosphatase in phosphorus deficient Arabidopsis thaliana. Physiol Plantarum 116:293–298

    Article  CAS  Google Scholar 

  • Cornet F, Diem HG (1982) Etude comparative de l’efficacité des souches de Rhizobium d’Acacia isolées de sols du Sénégal et effet de la double symbiose RhizobiumGlomus mosseae sur la croissance de Acacia holosericea et A. raddiana. Bois et Forêts des Tropiques 198:3–15

    Google Scholar 

  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpeau MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Criquet S, Ferre E, Farnet AM, Le Petit J (2004) Annual dynamics of phosphatase activities in an overgreen oak litter, influence of biotic and abiotic factors. Soil Biol Biochem 36:1111–1118

    Article  CAS  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    Article  CAS  Google Scholar 

  • Degens BD, Vojvodic-Vukovic M (1999) A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Aust J Soil Res 37:593–601

    Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153

    Article  CAS  Google Scholar 

  • Dighton J, Poskitt JM, Brown TK (1993) Phosphate influx into ectomycorrhizal and saprotrophic fungal hyphae in relation to phosphate supply; a potential method for selection of efficient mycorrhizal species. Mycol Res 97:355–358

    Article  Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332

    Article  CAS  Google Scholar 

  • Drever JI, Vance GF (1994) Role of soil organic acids in mineral weathering processes. In: Lewan MD, Pittman ED (eds) The role of organic acids in geological processes. Springer, Heidelberg, pp 138–161

    Chapter  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  PubMed  CAS  Google Scholar 

  • Duponnois R, Founoune H, Lesueur D, Thioulouse J, Neyra M (2000) Ectomycorrhization of six Acacia auriculiformis provenances from Australia, Papua New Guinea and Senegal in glasshouse conditions: effect on the plant growth and on the multiplication of plant parasitic nematodes. Aust J Exp Agric 40:443–450

    Article  Google Scholar 

  • Duponnois R, Founoune H, Lesueur D (2002) Influence of controlled dual ectomycorrhizal and rhizobial symbiosis on the growth of Acacia mangium provenances, the indigenous symbiotic microflora and the structure of plant parasitic nematode communities. Geoderma 109:85–102

    Article  Google Scholar 

  • Duponnois R, Founoune H, Masse D, Pontanier R (2005) Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semi-arid site in Senegal: growth response and influences on the mycorrhizal soil infectivity. For Ecol Manage 207:351–362

    Article  Google Scholar 

  • Duponnois R, Plenchette C, Prin Y, Ducousso M, Kisa M, Bâ AM, Galiana A (2007) Use of mycorrhizal inoculation to improve reafforestation process with Australian Acacia in Sahelian ecozones. Ecol Eng 29:105–112

    Article  Google Scholar 

  • Founoune H, Duponnois R, Meyer JM, Thioulouse J, Masse D, Chotte JL, Neyra M (2002a) Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of mycorrhization helper bacteria (MHB) from a Soudano-Sahelian soil. FEMS Microbiol Ecol 41:37–46

    Article  PubMed  CAS  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM (2002b) Ectomycorrhization of Acacia mangium, Willd. and Acacia holosericea, A. Cunn. Ex G. Don in Senegal. Impact on plant growth, populations of indigenous symbiotic microorganisms and plant parasitic nematodes. J Arid Environ 50:325–332

    Article  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002c) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89

    Article  Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir – Laccaria bicolor mycorrhizosphere. Appl Microbiol Environ 63:1852–1860

    CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JP, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1987) Effect of different microflora on the success of mycorrhizal inoculation of Pinus radiata. Can J For Res 17:941–943

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1989) Ectomycorrhizal infection of Pinus radiata by Rhizopogon luteolus is stimulated by microorganisms naturally present in the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • Garcia C, Hernandez T, Roldan A, Albaladejo J (1997) Biological and biochemical quality of a semi-arid soil after induced revegetation. J Environ Qual 26:1116–1122

    Article  CAS  Google Scholar 

  • Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum. 1. Excretion of acid phosphatase by tomato plants and suspension cultured cells. Plant Physiol 87:711–715

    Article  PubMed  CAS  Google Scholar 

  • Grayston SJ, Campbell CD, Vaughan D (1994) Microbial diversity in the rhizospheres of different tree species. In: Pankhurst CE (ed) Soil biota: management in sustainable farming systems. CSIRO, Adelaide, pp 155–157

    Google Scholar 

  • Haas H, Redl B, Friedlin E, Stöffler G (1992) Isolation and analysis of the Penicillium chrysogenum phoA gene encoding a secreted phosphate-repressible acid phosphatase. Gene 113:129–133

    Article  PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Uber neurer erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der Deitschen Landwirtshaftlichen Geserllshaft 98:59–78

    Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1997) Effect of solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal mobilize nutrients from minerals. Trends Ecol Evol 16:248–253

    Article  PubMed  Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhized mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Louche J, Ali MA, Cloutier-Hurteau B, Sauvage FX, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatase secreted from ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73:323–335

    PubMed  CAS  Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 1–10

    Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Nahas E, Terenzi HF, Rossi A (1982) Effects of carbon source and pH on the production and secretion of acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Neurospora crassa. J Gen Microbiol 128:2017–2021

    CAS  Google Scholar 

  • Ochs M (1996) Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol 132:119–124

    Article  CAS  Google Scholar 

  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Dreyfus B, Duponnois R (2009) Responses of Pinus halepensis growth, microbial soil functionalities and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320:169–179

    Article  CAS  Google Scholar 

  • Palacios MC, Haros M, Rosell CM, Sanz Y (2005) Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. J Appl Microbiol 98:229–237

    Article  PubMed  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. 2. Effect of K + and Mg 2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Quiquampoix H, Mousain D (2005) Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 89–112

    Chapter  Google Scholar 

  • Ramanankierana N, Rakotoarimanga N, Thioulouse J, Kisa M, Randrianjohanny E, Ramaroson L, Duponnois R (2006) The ectomycorrhizosphere effect influences functional diversity of soil microflora. Int J Soil Sci 1:8–19

    Article  Google Scholar 

  • Ramanankierana N, Ducousso M, Rakotoarimanga N, Prin Y, Thioulouse J, Randrianjohany E, Ramaroson L, Kisa M, Galiana A, Duponnois R (2007) Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae): sporophore diversity, patterns of root colonization and effects on seedling growth and soil microbial catabolic diversity. Mycorrhiza 17:195–208

    Article  PubMed  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic, New York, pp 299–343

    Google Scholar 

  • Rao MA, Gianfreda L, Palmiero F, Violante A (1996) Interactions of acid phosphatase with clays, organic molecules and organic mineral complexes. Soil Sci 161:751–760

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Lond B Biol Sci 355:815–830

    Article  PubMed  CAS  Google Scholar 

  • Remigi P, Faye A, Kane A, Deruaz M, Thioulouse J, Cissoko M, Prin Y, Galiana A, Dreyfus B, Duponnois R (2008) The exotic legume tree species Acacia holosericea alters microbial soil functionalities and the structure of the Arbuscular mycorrhizal community. Appl Environ Microbiol 74:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  PubMed  CAS  Google Scholar 

  • Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33:2093–2103

    Article  CAS  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel KL, Bethlenfalvay GJ (2003) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    Article  Google Scholar 

  • Senghor K (1998) Etude de l’incidence du nématode phytoparasite Meloidogyne javanica sur la croissance et la symbiose fixatrice d’azote de douze espèces d’Acacia (africains et australiens) et mise en évidence du rôle des symbiotes endo et ectomycorhiziens contre ce nématode. Doctoral thesis. University of Chekh Anta Diop, Dakar

    Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Smith S, Read J (2008) Mycorrhizal symbiosis (Ed. Hardcover). Academic Press. 800 p.

    Google Scholar 

  • Sparling GP, Schipper LA, Hewitt AE, Degens BP (2000) Resistance to cropping pressure of two New Zealand soils with contrasting mineralogy. Aust J Soil Res 38:85–100

    Article  Google Scholar 

  • Timonen S, Marschner P (2006) Mycorrhizosphere concept. In: Mukerjii KG, Manoharachary C, Singh J (eds) Soil biology. Springer, Berlin, pp 155–172

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1996) The use of isotropic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Valentine LL, Fieldler TL, Hart AA, Petersen CA, Berninghausen HK, Southworth D (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135

    Article  Google Scholar 

  • van der Hejden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    Article  PubMed  Google Scholar 

  • Wallander H, Mahmood S, Hagerberg D, Johansson L (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65

    PubMed  CAS  Google Scholar 

  • Weber RWS, Pitt D (1997) Purification, characterization and exit routes of two acid phosphatases secreted by Botrytis cinerea. Mycol Res 101:1431–1439

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wyss M, Brugger R, Kroenberger A, Remy R, Fimbel R, Osterhelt G, Lehmann M, van Loon A (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    PubMed  CAS  Google Scholar 

  • Yoshida H, Oikawa S, Ikeda M, Reese ET (1989) A novel acid-phosphatase excreted by Penicillium funiculosum that hydrolyzes both phosphodiesters and phospho- monoesters with aryl leaving groups. J Biochem 105:794–798

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Duponnois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duponnois, R. et al. (2012). The Impact of Mycorrhizosphere Bacterial Communities on Soil Biofunctioning in Tropical and Mediterranean Forest Ecosystems. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_5

Download citation

Publish with us

Policies and ethics