Skip to main content

Searching for Drugs That Target Multiple Receptors for Anthelmintics from African Natural Products

  • Chapter
  • First Online:
Drug Discovery in Africa

Abstract

Assay strategies that permit mechanism-based screening for new antiparasitic drugs on-site have been established at the Universities of Botswana and Cape Town. Researchers at these sites can take advantage of the chemical and biological diversity found in Africa to identify lead compounds for use against parasitic nematodes of local importance. The platform employs recombinant strains of yeast which express parasite proteins in a context that makes the survival of the microbe dependent on the function of the parasite drug target. African natural products can be subjected to high-throughput screening campaigns for discovery of compounds that selectively act on these parasite proteins. Yeast strains functionally expressing nematode G-protein-coupled receptors (GPCRs) allow detection of novel anthelmintic leads that interact with multiple receptors, reducing the chances of selecting drug-resistant parasite populations. Screening collections of African bio-extracts, to identify non-peptide ligands that target parasite GPCRs, provides local control of intellectual property rights, creating an economically sustainable platform. Revenues derived from agreements for leads for other indications of global economic value can fund further work to explore the chemistry embodied in the biodiversity of Africa to expand this platform beyond parasitic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

DMSO:

Dimethyl sulfoxide

FLPs:

FMRFamide-like peptides

FLP-GPCRs:

FMRFamide-like peptide G-protein-coupled receptors

GPCR:

G-protein-coupled receptor

HTS:

High-throughput screening

IC50 :

Half maximal inhibitory concentration

IP:

Intellectual property

MTA:

Material transfer agreements

NTDs:

Neglected tropical diseases

p450:

Cytochrome p450

pANPL:

pan-African Natural Product Library

R&D:

Research and development

SAR:

Structure–activity relationships

SOP:

Standard operating procedure

TK:

Traditional knowledge

UB:

University of Botswana

UCT:

University of Cape Town

References

  1. http://www.who.int/features/factfiles/neglected_tropical_diseases/ntd_facts/en/index.html. Accessed July 2011

  2. http://www.who.int/neglected_diseases/diseases/en/. Accessed July 2011.

  3. Hotez PJ, Brindley PJ, Bethony JM et al (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118:1311–1321

    Article  CAS  Google Scholar 

  4. Crompton DWT, Savioli L (2007) Helminthiasis for public health. CRC/Taylor and Francis, Boca Raton, FL, 362pp

    Google Scholar 

  5. Klopper RR (2006) Inventory of the African flora: a world first for the forgotten continent. S Afr J Sci 102:185–186

    Google Scholar 

  6. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  7. Molinari G (2009) Natural products in drug discovery: present status and perspective. In: Guzman CA, Feuerstein GZ (eds) Pharmaceutical biotechnology. Landes Bioscience and Springer Science+Business Media, Austin, TX, pp 13–27

    Chapter  Google Scholar 

  8. Hotez PJ, Molyneux DH, Fenwick A et al (2007) Control of neglected tropical diseases. N Engl J Med 357:1018–1027

    Article  CAS  Google Scholar 

  9. Geary TG, Woo K, McCarthy JS et al (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40:1–13

    Article  CAS  Google Scholar 

  10. Geary TG, Gauvry N (2011) Anthelmintic discovery for human infections. In: Palmer MJ, Wells TNC (eds) Neglected diseases and drug discovery. Royal Society of Chemistry Press, Cambridge

    Google Scholar 

  11. Geary TG, Mackcbrrenzie CD (2011) Progress and challenges in the discovery of macrofilaricidal drugs. Expert Rev Anti Infect Ther 9(8):681–695

    Article  Google Scholar 

  12. http://www.irinnews.org/report.aspx?reportid=82486. Accessed Oct 2011

  13. Gamo F-J, Sanz LM, Vidal J et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310

    Article  CAS  Google Scholar 

  14. Rottmann M, McNamara C, Yeung BKS et al (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180

    Article  CAS  Google Scholar 

  15. Geary TG, Thompson DP, Klein RD (1999) Mechanism-based screening: discovery of the next generation of anthelmintics depends upon more basic research. Int J Parasitol 29:105–112

    Article  CAS  Google Scholar 

  16. Geary TG (2011) Mechanism-based screening strategies for anthelmintic discovery. In: Caffrey C (ed) Parasitic helminths: targets, drugs and vaccines. Wiley-VCH, Weinheim

    Google Scholar 

  17. Klein RD, Geary TG (1997) Recombinant microorganisms as tools for high-throughput screening for non-antibiotic compounds. J Biomol Screen 2:41–49

    Article  CAS  Google Scholar 

  18. Geary TG (2001) Screening for parasiticides using recombinant microorganisms. In: Kirst HA, Yeh W-K, Zmijewski M, Bronson DB (eds) Enzyme technology for pharmaceutical and biotechnological applications. Dekker, New York, pp 323–341

    Google Scholar 

  19. Woods D, Butler C, Williams T, Greenwood K (2010) Receptor-based discovery strategies for insecticides and parasiticides. In: Geary TG, Maule AG (eds) Neuropeptide systems as targets for parasite and pest control. Landes Bioscience and Springer Science+Business Media, Austin, TX, pp 1–9

    Chapter  Google Scholar 

  20. Geary TG, Woods DJ, Williams T, Nwaka S (2009) Target identification and mechanism- based screening for anthelmintics: application of veterinary antiparasitic research programmes to search for new antiparasitic drugs for human indications. In: Selzer PM (ed) Drug discovery in infectious diseases. Wiley-VCH, Weinheim, pp 1–16

    Google Scholar 

  21. Maule AG, Mousley A, Marks NJ et al (2002) Neuropeptide signaling systems – potential drug targets for parasite and pest control. Curr Top Med Chem 2:733–758

    Article  CAS  Google Scholar 

  22. McVeigh P, Geary TG, Maule AG (2006) On the FLP-side of nematode neuropeptides. Trends Parasitol 22:385–396

    Article  CAS  Google Scholar 

  23. Geary TG, Marks NJ, Maule AG et al (1999) Pharmacology of FMRFamide-related peptides (FaRPs) in helminths. Ann N Y Acad Sci 897:212–227

    Article  CAS  Google Scholar 

  24. Lowery DE, Geary TG, Kubiak TM, Larsen MJ (2007) G protein-coupled receptor-like receptors and modulators thereof. US Patent No. 7,208,591

    Google Scholar 

  25. Greenwood K, Williams T, Geary T (2005) Nematode neuropeptide receptors and their development as anthelmintic screens. Parasitology 131:S169–S177

    Article  CAS  Google Scholar 

  26. Husson SJ, Mertens I, Janssen T et al (2007) Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 82:33–55

    Article  CAS  Google Scholar 

  27. Geary TG (2010) Non-peptide ligands for peptidergic G protein-coupled receptors. In: Geary TG, Maule AG (eds) Neuropeptide systems as targets for parasite and pest control. Landes Biosciences, Austin, TX, pp 10–26

    Chapter  Google Scholar 

  28. Woods DJ, Butler C, Williams T, Greenwood K (2010) Receptor-based discovery strategies for insecticides and parasiticides: a review. In: Geary TG, Maule AG (eds) Neuropeptide systems as targets for parasite and pest control. Landes Bioscience, Austin, TX, pp 1–9

    Chapter  Google Scholar 

  29. Wang ZX, Broach JR, Peiper SC (2006) Functional expression of CXCR4 in Saccharomyces cerevisiae in the development of powerful tools for the pharmacological characterization of CXCR4. Methods Mol Biol 332:115–127

    Google Scholar 

  30. Minic J, Sautel M, Salesse R, Pajot-Augy E (2005) Yeast system as a screening tool for the pharmacological assessment of G protein coupled receptors. Curr Med Chem 12:961–969

    Article  CAS  Google Scholar 

  31. Brooks DR, Isaac RE (2002) Functional genomics of parasitic worms: the dawn of a new era. Parasitol Int 51:319–325

    Article  CAS  Google Scholar 

  32. Kubiak TM, Larsen MJ, Bowman JW et al (2008) FMRFamide-like peptides (FLPs) encoded by the flp18 precursor gene activate two isoforms of the orphan Caenorhabditis elegans G-protein-coupled receptor Y58G8 heterologously expressed in mammalian cells. Biopolymers 90:339–348

    Article  CAS  Google Scholar 

  33. Birgül N, Weise C, Kreienkamp HJ, Richter D (1999) Reverse physiology in Drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J 18:5892–5900

    Article  Google Scholar 

  34. Lipinski CA, Lombardo F, Dominy BW et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  35. Tagboto S, Townson S (2001) Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol 50:199–295

    Article  CAS  Google Scholar 

  36. Juliani HR, Simon J, Ho C-T (eds) (2010) African natural plant products. New discoveries and challenges in chemistry and quality. Oxford University Press, Kettering, 616pp

    Google Scholar 

  37. http://www.napreca.net/. Accessed July 2011

  38. Chibale K, Masimirembwa CM, Guantai EM (2011) Extracting molecular information from African natural products to facilitate unique African-led drug discovery efforts. Future Med Chem 3:257–261

    Article  CAS  Google Scholar 

  39. http://www.gibex.org/index.php?suj=99. Accessed July 2011

  40. http://www.mcgill.ca/lifesciencescomplex/core/hts-hcs/chemical-libraries. Accessed July 2011

  41. Fura A, Shu Y-Z, Zhu M et al (2004) Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery. J Med Chem 47:4339–4351

    Article  CAS  Google Scholar 

  42. Hamilton C (2006) Biodiversity, biopiracy and benefits: what allegations of biopiracy tell us about intellectual property. Dev World Bioeth 6:158–173

    Google Scholar 

  43. Frew SE, Liu VY, Singer PA (2009) A business plan to help the global South in its fight against neglected diseases. Health Aff (Millwood) 28:1760–1773

    Article  Google Scholar 

  44. Daar AS, Berndtson K, Persad DL, Singer PA (2007) How can developing countries harness biotechnology to improve health? BMC Public Health 7:346–355

    Article  Google Scholar 

  45. http://www.grandchallenges.ca/wp-content/uploads/integratedinnovation_EN.pdf. Accessed July 2011

  46. Kingston DG (2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74:496–511

    Article  CAS  Google Scholar 

  47. Nwaka S, Ilunga TB, Da Silva JS et al (2010) Developing ANDI: a novel approach to health product R&D in Africa. PLoS Med 7:e1000293

    Article  Google Scholar 

  48. Dushenkov V, Raskin I (2008) New strategy for the search of natural biologically active substances. Russ J Plant Physiol 55:564–567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Geary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Geary, T.G., Ubalijoro, E. (2012). Searching for Drugs That Target Multiple Receptors for Anthelmintics from African Natural Products. In: Chibale, K., Davies-Coleman, M., Masimirembwa, C. (eds) Drug Discovery in Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28175-4_6

Download citation

Publish with us

Policies and ethics