Skip to main content

Predicting the Appearance of Materials Using Lorenz–Mie Theory

  • Chapter
  • First Online:
The Mie Theory

Abstract

Computer graphics systems today are able to produce highly realistic images. The realism has reached a level where an observer has difficulties telling whether an image is real or synthetic. The exception is when we try to compute a picture of a scene that really exists and compare the result to a photograph of the real scene. In this direct comparison, an observer quickly identifies the synthetic image. One of the problems is to model all the small geometrical details correctly. This is a problem that we will not consider. But even if we pick a simple experimental set up, where the objects in the scene have few geometrical details, a graphics system will still have a hard time predicting the result of taking a picture with a digital camera. The problem here is to model the optical properties of the materials correctly. In this chapter, we show how Lorenz–Mie theory enables us to compute the optical properties of turbid materials such that we can predict their appearance. To describe the entire process of predicting the appearance of a material, we include a description of the mathematical models used in realistic image synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://omlc.ogi.edu/spectra/PhotochemCAD/abs_html/riboflavin.html.

References

  1. R.A. Hall, D.P. Greenberg, IEEE Comput. Graph. Appl. 3(8), 10 (1983)

    Article  Google Scholar 

  2. A.S. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann Publishers, Inc., San Francisco, California, 1995). Two-volume set

    Google Scholar 

  3. S. Chandrasekhar, Radiative Transfer (Oxford, Clarendon Press, 1950). Unabridged and slightly revised version published by Dover Publications, Inc., in 1960

    Google Scholar 

  4. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 4th edn. (Taylor& Francis, New York, 2002)

    Google Scholar 

  5. M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Implementation (Morgan Kaufmann Publishers, an imprint of Elsevier Inc., 2004)

    Google Scholar 

  6. B.T. Phong, Commun. ACM 18(6), 311 (1975)

    Article  Google Scholar 

  7. R.V. Klassen, ACM Trans. Graph. 6(3), 215 (1987)

    Article  Google Scholar 

  8. D. Jackèl, B. Walter, Comput. Graph. Forum 16(4), 201 (1997)

    Article  Google Scholar 

  9. A.J. Preetham, P. Shirley, B. Smits, in Proceedings of ACM SIGGRAPH 1999 (ACM Press, 1999), pp. 91–100

    Google Scholar 

  10. L.V. Wang, H.I. Wu, Biomedical Optics: Principles and Imaging (John Wiley& Sons, Inc., Hoboken, New Jersey, 2007)

    Google Scholar 

  11. A. Sommerfeld, J. Runge, Annalen der Physik 340, 277 (1911)

    Article  ADS  Google Scholar 

  12. P.d. Fermat, OEuvres de Fermat: Correspondance, Vol. 2 (Gauthier-Villars et fils, Paris, 1894)

    Google Scholar 

  13. A. Glassner, IEEE Comput. Graph. Appl. 4(10), 15 (1984)

    Google Scholar 

  14. F.W. Jansen, in Data Structures for Raster Graphics: Proceedings of a Workshop Held at Steensel, the Netherlands, from 24–28 June 1985. Eurographics seminars, (Springer, 1986), pp. 57–73

    Google Scholar 

  15. A. Fujimoto, T. Tanaka, K. Iwata, IEEE Comput. Graph. Appl. 6(4), 16 (1986)

    Article  Google Scholar 

  16. K. Sung, P. Shirley, in Graphics Gems III, ed. by D. Kirk (Academic Press, 1992), pp. 271–274

    Google Scholar 

  17. T. Möller, B. Trumbore, J. Graph. Tools 2(1), 21 (1997)

    Article  Google Scholar 

  18. A. Fresnel, Mémoires de l’Académie des sciences de l’Institut de France 11, 393 (1832). Presented 7 January 1823

    Google Scholar 

  19. T. Whitted, Commun. ACM 23(6), 343 (1980). Presented at SIGGRAPH 79

    Google Scholar 

  20. R.W. Preisendorfer, Radiative Transfer on Discrete Spaces (Pergamon Press, 1965)

    Google Scholar 

  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978). Reissued by IEEE Press and Oxford University Press 1997

    Google Scholar 

  22. J.T. Kajiya, B.P. Von Herzen, Computer graphics (Proc. ACM SIGGRAPH 84) 18(3), 165 (1984)

    Google Scholar 

  23. S.N. Pattanaik, S.P. Mudur, J. Vis. Comput. Animat. 4(3), 133 (1993)

    Article  Google Scholar 

  24. T. Nishita, Y. Miyawaki, E. Nakamae, Computer graphics (Proc. ACM SIGGRAPH 87) 21(4), 303 (1987)

    Google Scholar 

  25. H. Rushmeier, in Realistic Input for Realistic Images. ACM Press (ACM SIGGRAPH 95 Course Notes, 1995). Also appeared in the ACM SIGGRAPH 98 Course Notes—A Basic Guide to Global Illumination

    Google Scholar 

  26. P. Callet, Comput. Graph. Forum 15(2), 119 (1996)

    Article  Google Scholar 

  27. T. Nishita, Y. Dobashi, in Proceedings of Computer Graphics International 2001 (IEEE Computer Society, 2001), pp. 149–156

    Google Scholar 

  28. J.R. Frisvad, N.J. Christensen, H.W. Jensen, ACM Trans. Graph. 26(3) (2007). Article 60

    Google Scholar 

  29. L.G. Henyey, J.L. Greenstein, Annales d’Astrophysique, 3, 117, (1940) Also in. Astrophys. J. 93, (1941)

    Google Scholar 

  30. C.F. Bohren, D.P. Gilra, J. Colloid Interface Sci. 72(2), 215 (1979)

    Article  Google Scholar 

  31. H.C. van de Hulst, Light Scattering by Small Particles (John Wiley& Sons, Inc., New York, 1957), Unabridged and corrected version of the work published by Dover Publications, Inc., in 1981

    Google Scholar 

  32. L. Lorenz, Det kongelig danske Videnskabernes Selskabs Skrifter 6(1), 2–62 (6. Række, naturvidenskabelig og mathematisk Afdeling, 1890) pp 2–62

    Google Scholar 

  33. G. Mie, Annalen der Physik 25(3), 377 (1908). IV. Folge

    Google Scholar 

  34. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969)

    Google Scholar 

  35. J.V. Dave, IBM J. Res. Dev. 13(3), 302 (1969)

    Article  ADS  Google Scholar 

  36. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley& Sons, Inc., 1983)

    Google Scholar 

  37. G.W. Kattawar, G.N. Plass, Appl. Opt. 6(8), 1377 (1967)

    Article  ADS  Google Scholar 

  38. W.J. Wiscombe, Appl. Opt. 19(9), 1505 (1980)

    Article  ADS  Google Scholar 

  39. W.C. Mundy, J.A. Roux, A.M. Smith, J. Opt. Soc. Am. 64(12), 1593 (1974)

    Article  ADS  Google Scholar 

  40. V.E. Cachorro, L.L. Salcedo, J. Electromagn. Waves Appl. 5(9), 913 (1991)

    Article  Google Scholar 

  41. D.W. Mackowski, R.A. Altenkirch, M.P. Menguc, Appl. Opt. 29(10), 1551 (1990)

    Article  ADS  Google Scholar 

  42. Z.S. Wu, Y.P. Wang, Radio Sci. 26(6), 1393 (1991)

    Article  ADS  Google Scholar 

  43. W. Yang, Appl. Opt. 42(9), 1710 (2003)

    Article  ADS  Google Scholar 

  44. H.C. van de Hulst, Physica 15(8–9), 740 (1949)

    Article  ADS  MATH  Google Scholar 

  45. J. Randrianalisoa, D. Baillis, L. Pilon, J. Opt. Soc. Am. A 23(7), 1645 (2006)

    Article  ADS  Google Scholar 

  46. J. Yin, L. Pilon, J. Opt. Soc. Am. A 23(11), 2784 (2006)

    Article  ADS  Google Scholar 

  47. Q. Fu, W. Sun, J. Quant. Spectr. Radiat. Transf. 100(1–3), 137 (2006)

    Article  ADS  Google Scholar 

  48. T.C. Grenfell, S.G. Warren, J. Geophys. Res. 104(D24), 31697 (1999)

    Google Scholar 

  49. S.P. Neshyba, T.C. Grenfell, S.G. Warren, J. Geophys. Res. 108(D15, 4448), 6 (2003)

    Google Scholar 

  50. T.C. Grenfell, S.P. Neshyba, S.G. Warren, J. Geophys. Res. 110(D17203), 1 (2005)

    Google Scholar 

  51. J.R. Frisvad, Light, Matter, and Geometry: The Cornerstones of Appearance Modelling (VDM Verlag Dr. Müller, 2008)

    Google Scholar 

  52. J.A. Lock, G. Gouesbet, J. Quant. Spectr. Radiat. Transf. 110(11), 800 (2009). Review

    Google Scholar 

  53. G. Gouesbet, J. Quant. Spectr. Radiat. Transf. 110(14–16), 1223 (2009). Review

    Google Scholar 

  54. E.P. Lafortune, Y.D. Willems, in Proceedings of the 7th Eurographics Workshop on Rendering (1996), pp. 91–100

    Google Scholar 

  55. H.D. Goff, A.R. Hill, in Dairy Science and Technology Handbook: Principles and Properties, vol. 1, ed. by Y.H. Hui (VCH Publishers, Inc., New York, 1993), Chap. 1, pp. 1–81

    Google Scholar 

  56. P.F. Fox, P.L.H. McSweeney, Dairy Chemistry and Biochemistry (Blackie Academic& Professional, London, 1998)

    Google Scholar 

  57. X. Quan, E.S. Fry, Appl. Opt. 34(18), 3477 (1995)

    Article  ADS  Google Scholar 

  58. P.D.T. Huibers, Appl. Opt. 36(16), 3785 (1997)

    Article  ADS  Google Scholar 

  59. H. Du, R.C.A. Fuh, J. Li, L.A. Corkan, J.S. Lindsey, Photochem. Photobiol. 68(2), 141 (1998)

    Google Scholar 

  60. J. Koziol, Photochem. Photobiol. 5, 41 (1966)

    Article  Google Scholar 

  61. G.M. Hale, M.R. Querry, Appl. Opt. 12(3), 555 (1973)

    Article  ADS  Google Scholar 

  62. M.C. Michalski, V. Briard, F. Michel, Lait 81, 787 (2001)

    Article  Google Scholar 

  63. P. Walstra, R. Jenness, Dairy Chemistry and Physics (John Wiley& Sons, New York, 1984)

    Google Scholar 

  64. P. Walstra, Neth. Milk Dairy J. 29, 279 (1975)

    Google Scholar 

  65. D.W. Olson, C.H. White, R.L. Richter, J. Dairy Sci. 87(10), 3217 (2004)

    Article  Google Scholar 

  66. R. Attaie, R.L. Richtert, J. Dairy Sci. 83, 940 (2000)

    Article  Google Scholar 

  67. R. Gebhardt, W. Doster, J. Friedrich, U. Kulozik, Eur. Biophys. J. 35, 503 (2006)

    Article  Google Scholar 

  68. D.G. Schmidt, P. Walstra, W. Buchheim, Neth. Milk Dairy J. 27, 128 (1973)

    Google Scholar 

  69. A. Stockman, L.T. Sharpe, Vis. Res. 40(13), 1711 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe Revall Frisvad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frisvad, J.R., Christensen, N.J., Jensen, H.W. (2012). Predicting the Appearance of Materials Using Lorenz–Mie Theory. In: Hergert, W., Wriedt, T. (eds) The Mie Theory. Springer Series in Optical Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28738-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28738-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28737-4

  • Online ISBN: 978-3-642-28738-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics