Skip to main content

Learning from Various Plants and Scenarios: Statistical Modeling

  • Chapter
  • First Online:
Growth and Defence in Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

  • 2295 Accesses

Abstract

Experimental approaches studying complex phenomena in nature often show various answers to one question, depending on the experimental scale chosen, the experimental set-up and other types of restrictions chosen along the way. This difficulty does not only result from a lack of experimental technology, but also from our reductionist approach. While having been shown to be very powerful in experimental sciences, the approach also faces limitations dealing with complex systems. Being aware of such difficulties, statistical methodology has to provide answers for various levels of contingency. We discuss some of these questions and look at examples of statistical methods according to their power in addressing questions raised from complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beatson RK, zu Castell W (2011) Scattered data interpolation of Radon data. Calcolo 48:5–19

    Google Scholar 

  • Beatty J (1995) The evolutionary contingency thesis. In: Wolters G, Lennox JG (eds) Concepts, theories, and rationality in the biological sciences. University of Pittsburgh Press, Pittsburgh, pp 45–81

    Google Scholar 

  • Beran R (2008) Discussion: approximating data. J Korean Stat Soc 37(3):217–219

    Google Scholar 

  • Breiman L (2001) Statistical modeling: the two cultures. Stat Sci 16:199–231

    Article  Google Scholar 

  • Bruggeman FJ, Westerhoff HV, Boogerd FC (2002) BioComplexity: a pluralist research strategy is necessary for a mechanistic explanation of the ‘live’ state. Philos Psychol 15:411–440

    Article  Google Scholar 

  • De Boeck HJ, Liberloo M, Gielen B, Nijs I, Ceulemans R (2008) The observer effect in plant science. New Phytol 177:579–583

    Article  PubMed  Google Scholar 

  • Fisher RA (1956) Statistical methods and scientific inference. Hafner, New York

    Google Scholar 

  • Fleischmann F, Raidl S, Oßwald WF (2010) Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ Pollut 158:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1989) Wonderful life. Norton, New York

    Google Scholar 

  • Hermle S, Vollenweider P, Günthardt-Goerg MS, McQuattie CJ, Matyssek R (2007) Leaf responsiveness of Populus tremula and Salix viminalis to soil contamination by heavy metals and rainwater acidity. Tree Physiol 27:1517–1531

    Article  PubMed  CAS  Google Scholar 

  • Kauffman S (1995) At home in the universe – the search for the laws of self-organization and complexity. Oxford University Press, New York

    Google Scholar 

  • Kitao M, Löw M, Heerdt C, Grams TEE, Häberle KH, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544

    Article  PubMed  CAS  Google Scholar 

  • Laughlin RB (2005) A different universe – reinventing physics from the bottom down. Basic Books, New York

    Google Scholar 

  • Laughlin RB, Pines D (2000) The theory of everything. Proc Natl Acad Sci USA 97:28–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment – experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn JJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke D, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle KH (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532

    Article  PubMed  CAS  Google Scholar 

  • Mitchell S (2000) Dimensions of scientific law. Philos Sci 76:242–265

    Article  Google Scholar 

  • Mitchell SD (2002) Ceteris paribus – an inadequate representation for biological contingency. Erkenntnis 57:329–350

    Article  Google Scholar 

  • Mitchell SD (2009) Unsimple truths – science, complexity, and policy. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst.). Environ Pollut 158:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Pritsch K (2011) Private communication

    Google Scholar 

  • Riek W, Wolff B (2005) Bodenkundliche Indikatoren für die Auswertung der Bodenzustanderhebung im Wald (BZE II). Bundesministerium f. Verbraucherschutz, Ernährung u. Landwirtschaft, Bonn

    Google Scholar 

  • Scheuerer M (2009) A comparison of models and methods for spatial interpolation in statistics and numerical analysis. PhD thesis, University of Göttingen

    Google Scholar 

  • Schlink K (2010) Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Funct Integr Genomics 10:253–264

    Article  PubMed  CAS  Google Scholar 

  • Skyrms B (1980) Causal necessity. Yale University Press, New Haven

    Google Scholar 

  • Slawski M, zu Castell W, Tutz G (2010) Feature selection guided by structural information. Ann Appl Stat 4:1056–1080

    Article  Google Scholar 

  • Sober E (1997) Two outbreaks of lawlessness in recent philosophy of biology. Philos Sci 64:458–467

    Article  Google Scholar 

  • Solé R, Goodwin B (1962) Signs of life: how complexity pervades biology. Basic Books, New York

    Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56

    Article  CAS  Google Scholar 

  • Tyler G (1992) Critical concentrations of heavy metals in the mor horizon of Swedish forests. Swedish Environmental Protection Agency, Report 4078, pp 1–38

    Google Scholar 

  • Valcu C-M, Junqueira M, Shevchenko A, Schlink K (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091

    Article  PubMed  CAS  Google Scholar 

  • van den Burg J (1985) Foliar analysis for determination of tree nutrient status – a compilation of literature data. Rijksinstituut voor onderzoek in de bos- en landschapsbouw “de Dorschkamp”, Wageningen

    Google Scholar 

  • van den Burg J (1990) Foliar analysis for determination of tree nutrient status – a compilation of literature data; 2. Literature 1985–1989. “de Dorschkamp” Institute for Forestry and Urban Ecology, Wageningen

    Google Scholar 

  • Vapnik VN (1995) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Waters CK (1998) Causal regularities in the biological world of contingent distributions. Biol Philos 13:5–36

    Article  Google Scholar 

  • Werner H, Fabian P (2002) Free-air fumigation of mature trees. Environ Sci Pollut Res 9(2):117–121

    Article  Google Scholar 

  • Woodward J (2001) Law and explanation in biology: invariance is the kind of stability that matters. Philos Sci 68:1–20

    Article  Google Scholar 

  • zu Castell W, Schrödl S, Seifert T (2005) Volume interpolation of CT images from tree trunks. Plant Biol 7:737–744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. zu Castell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castell, W.z., Matyssek, R., Göttlein, A., Fleischmann, F., Staninska, A. (2012). Learning from Various Plants and Scenarios: Statistical Modeling. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_16

Download citation

Publish with us

Policies and ethics