Skip to main content

Tracing Carbon Fluxes: Resolving Complexity Using Isotopes

  • Chapter
  • First Online:
Growth and Defence in Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

Abstract

Cells, organisms and ecosystems are interconnected and interdependent metabolic networks, which are operated by carbon substrate fluxes. Isotope methodologies are useful tools for tracing these fluxes. A large diversity of tracer approaches is available for such investigations, ranging from uses of position-labelled 13C substrates in steady-state systems to tracing of natural alterations of isotopic signals in natural conditions. We discuss general principles of different carbon isotope tracer methodologies and specifics of their use in studies of processes at various time frames and scales of biological complexity. Furthermore, we show how “compartmental modelling” can help to characterise the structure and kinetic features of metabolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DK, Libourel IGL, Shachar-Hill Y (2009) Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ 32:1241–1257

    Article  PubMed  CAS  Google Scholar 

  • Atkins GL (1969) Multicompartment models in biological systems. Methuen, London

    Google Scholar 

  • Austin RB, Ford MA, Edrich JA (1976) Some effects of leaf posture on photosynthesis any yield in wheat. Ann Appl Biol 83:425–446

    Article  Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bassham JA, Benson AA, Calvin M (1950) The path of carbon in photosynthesis. 8. The role of malic acid. J Biol Chem 185:781–787

    PubMed  CAS  Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M (1954) The path of carbon in photosynthesis, 21. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76:1760–1770

    Article  CAS  Google Scholar 

  • Bender MM (1971) Variations in 13C/12C ratios of plants in relation to pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  CAS  Google Scholar 

  • Benson AA (1951) The identification of Ribulose in 14CO2 photosynthesis products. J Am Chem Soc 73:2971–2972

    Article  CAS  Google Scholar 

  • Bird MI, Chivas AR, Head J (1996) A latitudinal gradient in carbon turnover times in forest soils. Nature 381:143–146

    Article  CAS  Google Scholar 

  • Bock M, Glaser B, Millar N (2007) Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2. Glob Change Biol 13:478–490

    Article  Google Scholar 

  • Bol R, Poirier N, Balesdent J et al (2009) Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Commun Mass Spectrom 23:2551–2558

    Article  PubMed  CAS  Google Scholar 

  • Broecker WS, Peng TH, Ostlund G, Stuiver M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res Oceans 90(C4):6953–6970

    Article  CAS  Google Scholar 

  • Buchmann NN, Ehleringer JR (1998) CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agric Forest Meteorol 89:45–58

    Article  Google Scholar 

  • Carbone MS, Trumbore SE (2007) Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol 176:124–135

    Article  PubMed  CAS  Google Scholar 

  • Carbone MS, Czimczik CI, McDuffee KE, Trumbore SE (2007) Allocation and residence time of photosynthetic products in a boreal forest using a low-level 14C pulse-chase labeling technique. Glob Change Biol 13:466–477

    Article  Google Scholar 

  • Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ (2009) Viewpoint: why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol 36:199–213

    Article  CAS  Google Scholar 

  • Ciais P, Tans PP, White JWC, Trolier M, Francey RJ, Berry JA, Randall DR, Sellers PJ, Collatz JG, Schimel DS (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. J Geophys Res Atmos 100:5051–5070

    Article  CAS  Google Scholar 

  • De Groot PA (ed) (2004) Handbook of stable isotope analytical techniques, vol I. Elsevier, Amsterdam

    Google Scholar 

  • De Groot PA (ed) (2008) Handbook of stable isotope analytical techniques, vol II. Elsevier, Amsterdam

    Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. The terrestrial environment A. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • Deléens E, Pavlides D, Queiroz O (1983) Natural 13C abundance as a tracer for the determination of leaf matter turn-over in C3 plants. Physiologie Végétale 21:723–729

    Google Scholar 

  • DeNiro MJ, Epstein S (1977) Mechanisms of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fung I, Field CB, Berry JA, Thompson MV, Randerson JT, Malmstrom CM, Vitousek PM, Collatz GJ, Sellers PJ, Randall DA, Denning AS, Badeck F, John J (1997) Carbon 13 exchanges between the atmosphere and biosphere. Glob Biogeochem Cycles 11:507–533

    Article  CAS  Google Scholar 

  • Gamnitzer U, Schäufele R, Schnyder H (2009) Observing 13C labelling kinetics in CO2 respired by a temperate grassland ecosystem. New Phytol 184:376–386

    Article  PubMed  CAS  Google Scholar 

  • Gamnitzer U, Moyes AB, Bowling DR, Schnyder H (2011) Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment. Biogeosciences 8:1333–1350

    Article  CAS  Google Scholar 

  • Gebbing T, Schnyder H (1999) Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol 121:871–878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gebbing T, Schnyder H, Kühbauch W (1998) Carbon mobilization in shoot parts and roots of wheat during grain filling: assessment by 13C/12C steady-state labelling, growth analysis and balance sheets of reserves. Plant Cell Environ 21:301–313

    Article  CAS  Google Scholar 

  • Geiger DR (1980) Measurement of translocation. Methods Enzymol 69:561–571

    Article  CAS  Google Scholar 

  • Geiger DR, Fondy BR (1979) Methods for continuous measurement of export from a leaf. Plant Physiol 64:361–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Geiger DR, Swanson CA (1965) Sucrose translocation in sugar beet. Plant Physiol 40:685–690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghashghaie J, Badeck FW, Lanigan G, Nogues S, Tcherkez G, Deléens E, Cornic G, Griffiths H (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem Rev 2:145–161

    Article  CAS  Google Scholar 

  • Glaser B, Millar N, Blum H (2006) Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2. Glob Change Biol 12:1521–1531

    Article  Google Scholar 

  • Gleixner G, Schmidt H-L (1997) Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates. J Biol Chem 272:5382–5387

    Article  PubMed  CAS  Google Scholar 

  • Grams TEE, Werner H, Kuptz D, Ritter W, Fleischmann F, Andersen CP, Matyssek R (2011) A free-air system for long-term stable carbon isotope labeling of adult forest trees. Trees 25:187–198

    Article  CAS  Google Scholar 

  • Gregory PJ, Atwell BJ (1991) The fate of carbon in pulse-labelled crops of barley and wheat. Plant Soil 136:205–213

    Article  CAS  Google Scholar 

  • Grimoldi AA, Kavanova M, Lattanzi FA, Schäufele R, Schnyder H (2006) Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol 172:544–553

    Article  PubMed  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Haupt-Herting S, Klug K, Fock HP (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126:388–396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    Article  PubMed  CAS  Google Scholar 

  • Hobbie EA, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385

    Article  CAS  Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Nasholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Jacquez J (1996) Compartmental analysis in biology and medicine. Elsevier, Amsterdam

    Google Scholar 

  • Jahnke S, Stöcklin G, Willenbrink J (1981) Translocation profiles of 11C-assimilates in the petiole of Marsilea quadrifolia L. Planta 153:56–63

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  • Jones DA, Smith AM, Woolhouse HW (1983) An apparatus for pulse and pulse-chase experiments with 14CO2 on attached leaves with known, steady-state rates of photosynthesis. Plant Cell Environ 6:161–166

    Article  CAS  Google Scholar 

  • Keel SG, Siegwolf RTW, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329

    Article  PubMed  CAS  Google Scholar 

  • Kilian MR, van Geel B, van der Plicht J (2000) 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quat Sci Rev 19:1011–1033

    Article  Google Scholar 

  • Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J, Werner RA, Saurer M, Rennenberg H, Buchmann N, Gessler A (2008) Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156:737–750

    Article  PubMed  Google Scholar 

  • Kouchi H, Yoneyama T (1984) Dynamics of carbon photosynthetically assimilated in nodulated soya bean-plants under steady-state conditions. 1. Development and application of 13CO2 assimilation system at a constant 13C abundance. Ann Bot 53:875–882

    CAS  Google Scholar 

  • Kruger NJ, Ratcliffe RG (2009) Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie 91:697–702

    Article  PubMed  CAS  Google Scholar 

  • Kruger NJ, Le Lay P, Ratcliffe RG (2007) Vacuolar compartmentation complicates the steady-state analysis of glucose metabolism and forces reappraisal of sucrose cycling in plants. Phytochemistry 68:2189–2196

    Article  PubMed  CAS  Google Scholar 

  • Kuptz D, Fleischmann F, Matyssek R, Grams TEE (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol. doi:10.1111/j.1469-8137.2011.03676.x

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Lattanzi FA, Schnyder H, Thornton B (2005) The sources of carbon and nitrogen supplying leaf growth. Assessment of the role of stores with compartmental models. Plant Physiol 137:383–395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lattanzi FA, Ostler U, Wild M, Morvan-Bertrand A, Decau M-L, Lehmeier CA, Meuriot F, Prud’homme M-P, Schäufele R, Schnyder H (2012) Fluxes in central carbohydrate metabolism of source leaves in a fructan-storing C3 grass – rapid turnover and futile cycling of sucrose in continuous light under contrasted nitrogen nutrition status. J Exp Bot. doi:10.1093/jxb/ers020

  • Leavitt SW, Paul EA, Kimball BA, Hendrey GR, Mauney JR, Rauschkolb R, Rogers H, Lewin KF, Nagy J, Pinter PJ Jr, Johnson HB (1994) Carbon isotope dynamics of free-air CO2-enriched cotton and soils. Agric Forest Meteorol 70:87–101

    Article  Google Scholar 

  • Lehmeier CA, Lattanzi FA, Schäufele R, Wild M, Schnyder H (2008) Root and shoot respiration of perennial ryegrass are supplied by the same substrate pools: assessment by dynamic 13C labeling and compartmental analysis of tracer kinetics. Plant Physiol 148:1148–1158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Libourel IGL, Shachar-Hill Y (2008) Metabolic flux analysis in plants: from intelligent design to rational engineering. Annu Rev Plant Biol 59:625–650

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Delfine S, Di Marco G (1999) Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Aust J Plant Physiol 26:733–736

    Article  Google Scholar 

  • Ludwig LJ, Canvin DT (1971) An open gas-exchange system for simultaneous measurement of CO2 and 14CO2 fluxes from leaves. Can J Bot 49:1299–1313

    Article  CAS  Google Scholar 

  • Meharg AA (1994) A critical review of labeling techniques used to quantify rhizosphere carbon-flow. Plant Soil 166:55–62

    Article  CAS  Google Scholar 

  • Melzer E, Schmidt HL (1987) Carbon isotope effects on the pyruvate-dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. J Biol Chem 262:8159–8164

    PubMed  CAS  Google Scholar 

  • Minchin PEH, Thorpe MR (2003) Using the short-lived isotope 11C in mechanistic studies of photosynthate transport. Funct Plant Biol 30:831–841

    Article  CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  • Ostle N, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Paterson E, Midwood AJ, Millard P (2009) Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol 184:19–33

    Article  PubMed  CAS  Google Scholar 

  • Pollock CJ, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol 42:77–101

    Article  CAS  Google Scholar 

  • Randerson JT, Thompson MV, Field CB (1999) Linking 13C-based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth. Tellus B Chem Phys Meteorol 51:668–678

    Article  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511

    Article  PubMed  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58

    Article  CAS  Google Scholar 

  • Ryle GJA, Cobby JM, Powell CE (1976) Synthetic and maintenance respiratory losses of 14CO2 in uniculm barley and maize. Ann Bot 40:571–586

    CAS  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon-cycle. Glob Change Biol 1:77–91

    Article  Google Scholar 

  • Schnyder H (1992) Long-term steady-state labelling of wheat plants by use of natural 13CO2/12CO2 mixtures in an open, rapidly turned-over system. Planta 187:128–135

    Article  PubMed  CAS  Google Scholar 

  • Schnyder H, de Visser R (1999) Fluxes of reserve-derived and currently assimilated carbon and nitrogen in perennial ryegrass recovering from defoliation. The regrowing tiller and its component functionally distinct zones. Plant Physiol 119:1423–1435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schnyder H, Lattanzi FA (2005) Partitioning respiration of C3-C4 mixed communities using the natural abundance 13C approach – testing assumptions in a controlled environment. Plant Biol 7:592–600

    Article  PubMed  CAS  Google Scholar 

  • Schnyder H, Schäufele R, Lötscher M, Gebbing T (2003) Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C-discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant Cell Environ 26:1863–1874

    Article  CAS  Google Scholar 

  • Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwender J (ed) (2009) Plant metabolic networks. Springer, Dordrecht, 331 p

    Google Scholar 

  • Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

  • Stenhouse MJ, Baxter MS (1977) Bomb 14C as a biological tracer. Nature 267:828–832

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Fell D, Fernie AR (2008) Getting to grips with the plant metabolic network. Biochem J 409:27–41

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez G, Farquhar GD (2005) Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct Plant Biol 32:277–291

    Article  CAS  Google Scholar 

  • Tcherkez G, Hodges M (2008) How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves. J Exp Bot 59:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez G, Nogues S, Bleton J, Cornic G, Badeck F, Ghashghaie J (2003) Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French Bean. Plant Physiol 131:237–244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tcherkez G, Mahe A, Gauthier P, Mauve C, Gout E, Bligny R, Cornic G, Hodges M (2009) In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in illuminated leaves. Plant Physiol 151:620–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thorpe MR, Minchin PEH (1991) Continuous monitoring of fluxes of photoassimilate in leaves and whole plants. J Exp Bot 42:461–468

    Article  CAS  Google Scholar 

  • Trumbore SE (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Change Biol 12:141–153

    Article  Google Scholar 

  • Trumbore SE (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci 37:47–66

    Article  CAS  Google Scholar 

  • Vargas R, Detto M, Baldocchi DD, Allen MF (2010) Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob Change Biol 16:1589–1605

    Article  Google Scholar 

  • Wild M (2010) The carbon and nitrogen supply systems of leaf growth in perennial ryegrass – characterization by dynamic 15N and 13C labelling and compartmental analysis of tracer influx into the leaf growth zone. Doctoral thesis, Technische Universität München

    Google Scholar 

  • Yakir D, Wang XF (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380:515–517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schnyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnyder, H. et al. (2012). Tracing Carbon Fluxes: Resolving Complexity Using Isotopes. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_7

Download citation

Publish with us

Policies and ethics