Skip to main content

Climate Control of Wood Formation: Illustrated for Scots Pine at Its Northern Distribution Limit

  • Chapter
  • First Online:
Cellular Aspects of Wood Formation

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 20))

Abstract

The growth of trees is a spectacular and exposed process based on a highly interlinked complex of hidden and cryptic metabolic and signaling pathways not yet fully understood. In this chapter, we focus on a sequence of studies on Scots pine as an example tree species during the past 10 years in the north of Finland. We particularly compare annual height growth and annual growth in girth in the long term. Moreover, we give attention to the chronological coherence between the growth in height and girth during a growing season. Finally, we go down on the cellular level and screen various variables of the water conducting cells for their suitability as climatic proxies.

Girth growth is promoted by a warm current summer and height growth by a warm preceding summer. Within a growing season, growth in height and girth culminates in the second half of June, clearly before the warmest period of the year in the second half of July. On the cellular level, it is concluded that diameter and wall thickness of earlywood tracheids are independent from one another and from tree-ring width and in consequence contain different climatic signals. These encouraging findings provide a strong rationale for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto T, Jalkanen R (1998) The needle trace method. Finnish Forest Research Institute, Research Papers 681, 36 p

    Google Scholar 

  • Abe H, Nakai T, Utsuma Y, Kagawa A (2003) Temporal water stress and wood formation in Cryptomeria japonica. Tree Physiol 23:859–863

    Article  PubMed  Google Scholar 

  • Aloni R (2013) The role of hormones in controlling vascular differentiation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Heidelberg

    Google Scholar 

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb) stems. Trees 11:462–468

    Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    Article  PubMed  Google Scholar 

  • Bailey JD, Harrington CA (2006) Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA. Tree Physiol 26:421–430

    Article  PubMed  Google Scholar 

  • Barnett JR (ed) (1981) Xylem cell development. Castle House Publications, Turnbridge Wells

    Google Scholar 

  • Bauch J (1993) Mineralelementversorgung von Nadelbäumen und ihre Bedeutung für das Wachstum, vol 172. Mitt Bundesforschungsanst Forst-/Holzwirtschaft, Hamburg, pp 75–84

    Google Scholar 

  • Bäucker E, Bues C-T, Vogel M (1998) Radial growth dynamics of spruce (Picea abies) measured by micro-cores. IAWA J 19:301–309

    Google Scholar 

  • Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlen W, Schweingruber FH, Zetterberg P (1990) A 1400-year tree-ring record of summer temperature in Fennoscandia. Nature 346:434–439

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shivatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    Article  CAS  Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley, CA

    Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–872

    Article  PubMed  Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305

    Article  Google Scholar 

  • Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Castle House Publications, Turnbridge Wells, pp 236–255

    Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19:402–408

    Article  Google Scholar 

  • DeSoto L, De la Cruz M, Fonti P (2011) Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can J For Res 41:1280–1294

    Article  Google Scholar 

  • Driscoll W, Wiles GC, D’Arrigo RD, Wilmking M (2005) Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve, Alaska. Geophys Res Lett 32:L20703. doi:10.1029/2005GL024258

    Article  Google Scholar 

  • Eckstein D (1983) Biological basis of dendrochronology, vol 141. Mitt Bundesforschungsanst Forst-/Holzwirtschaft, Hamburg, pp 11–20

    Google Scholar 

  • Eckstein D, Krause C (1989) Dendroecological studies on spruce trees to monitor environmental changes around Hamburg. IAWA Bull 10:175–182

    Google Scholar 

  • Eckstein D, Liese W (1975) Veränderungen der Holzstruktur bei rauchgeschädigten Fichten. IX Intern IUFRO-meeting on air pollution and forestry, Mariánská Lázne, Czechoslovakia, 15–18 Oct 1974; Prague 1975, pp 205–214

    Google Scholar 

  • Eckstein D, Schmidt B (1974) Dendroklimatologische Untersuchungen an Stieleichen aus dem maritimen Klimagebiet Schleswig-Holsteins. Angew Bot 48:371–383

    Google Scholar 

  • Eckstein D, Frisse E, Quiehl F (1977) Holzanatomische Untersuchungen zum Nachweis anthropogener Einflüsse auf die Umweltbedingungen einer Rotbuche. Angew Bot 51:47–56

    Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reaction of Pinus sylvestris L. and Quercus pubescens Willd. to drought years on a dry site in Valais, Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Graf-Pannatier W, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771

    Article  PubMed  CAS  Google Scholar 

  • Esper J, Büntgen U, Timonen M, Frank DC (2012) Variability and extremes of northern Scandinavian summer temperatures over the past two millennia. Glob Planet Change 88–89:1–9

    Article  Google Scholar 

  • Fonti P, Jansen S (2012) Xylem plasticity in response to climate. New Phytol 195:734–736

    Article  PubMed  Google Scholar 

  • Fonti P, Solomonoff N, García-Gonzáles I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570

    Article  PubMed  Google Scholar 

  • Fonti P, von Arx G, García-Gonzáles I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol 30:1140–1147

    Article  PubMed  CAS  Google Scholar 

  • Fromm J (2013) Xylem development in trees: from cambial divisions to mature wood cells. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Heidelberg

    Chapter  Google Scholar 

  • García-Gonzáles I, Eckstein D (2003) Climate signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Article  Google Scholar 

  • García-Gonzáles I, Fonti P (2008) Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees 22:237–244

    Article  Google Scholar 

  • Gartner BL, Aloni R, Funada R, Lichtfuss-Gautier AN, Roig FA (2002) Clues for dendrochronology from studies of wood structure and function. Dendrochronologia 20:53–61

    Article  Google Scholar 

  • Gindl W (2001) Cell-wall lignin content related to tracheid dimensions in drought sensitive Austrian pine (Pinus nigra Arnold). IAWA J 22:113–120

    Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Oven P (2007) Wood formation in Norway spruce (Picea abies) studied by pinning and intact tissue sampling method. Wood Research 52:1–10

    Google Scholar 

  • Grudd H (2008) Torneträsk tree-ring width and density AD 500–240: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857

    Article  Google Scholar 

  • Gurskaya MA, Shiyatov SG (2006) Distribution of frost injuries in the wood of conifers. Russ J Ecol 37:7–12

    Article  Google Scholar 

  • Gurskaya MA, Hallinger M, Eckstein D, Wilmking M (2012) Extreme cold summers in western Siberia, concluded from light-rings in the wood of conifers. Phyton 52:101–119

    Google Scholar 

  • Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896–1995. Tree Physiol 15:721–726

    Article  PubMed  Google Scholar 

  • Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:9–19

    Article  Google Scholar 

  • Hartig R (1885) Das Holz der deutschen Nadelwaldbäume. Verlag von Julius Springer, Berlin, 147 p

    Book  Google Scholar 

  • Heide OM (1985) Physiological aspects of climatic adaptation in plants with special reference to high-latitude environments. In: Kaurin Å, Junttila O, Nilsen J (eds) Plant production in the North. Norwegian University Press, Tromsø, pp 1–12

    Google Scholar 

  • Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M, Meriläinen J (2009) Summer temperature variations in Lapland during the medieval warm period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. J Quat Sci 24:450–456

    Article  Google Scholar 

  • Hicks S, Eckstein D, Schmitt U, Tuovinen M, Jalkanen R, McCarroll D, Pawellek F, Edouard J-L, Gagen M, Birks H, Serres R, Hyvärinen H, Nivala V (2000) Forest response to environmental stress at timberlines: sensitivity of Northern Alpine and Mediterranean forests to climate. In: European climate science conference, Vienna, Austria, 19–23 Oct 1998, 9 p

    Google Scholar 

  • Jalkanen R, Tuovinen M (2001) Annual needle production and height growth: better climate predictors than radial growth at treeline? Dendrochronologia 19:39–44

    Google Scholar 

  • Jalkanen R, Pensa M, Salminen H (2007) Development of Scots pine in the changing environment of the northern boreal zone in Finland. In: Taulavuori E, Taulavuori K (eds) Physiology of northern plants under changing environment. Research Signpost, Kerala, India, pp 271–289

    Google Scholar 

  • Jost L (1893) Ueber Beziehungen zwischen der Blattentwicklung und der Gefässbildung in der Pflanze. Bot Ztg 51:89–138

    Google Scholar 

  • Kalela-Brundin M (1999) Climatic information from tree-rings of Pinus sylvestris L and a reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene 9:59–77

    Article  Google Scholar 

  • Karlsson PS (1989) In situ photosynthetic performance of four coexisting dwarf shrubs in relation to light in a subarctic woodland. Funct Ecol 3:481–487

    Article  Google Scholar 

  • Kern Z, Popa I, Varga Z, Széles É (2009) Degraded temperature sensitivity of a stone pine chronology explained by dendrochemical evidences. Dendrochronologia 27:121–128

    Article  Google Scholar 

  • Kimmins JP (1987) Forest ecology. Macmillan, New York, pp 130–147

    Google Scholar 

  • Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree rings of Scots pine (Pinus sylvestris L.) in coastal northern Norway. Holocene 11:41–52

    Article  Google Scholar 

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69

    Article  Google Scholar 

  • Knigge W, Schulz H (1961) Einfluss der Jahreswitterung 1959 auf Zellartenverteilung, Faserlänge und Gefäßweite verschiedener Holzarten. Holz Roh-/Werkstoff 19:293–303

    Article  Google Scholar 

  • Kozlowski TT (1971) Growth and development of trees, vol I and II. Academic, New York

    Google Scholar 

  • Larson PR (1994) The vascular cambium – development and structure. Springer, Berlin

    Book  Google Scholar 

  • Liang E, Eckstein D (2006) Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytol 171:783–791

    Article  PubMed  Google Scholar 

  • Lindholm M, Aalto T, Jalkanen R, Salminen H, Ogurtsov M (2011) The height-increment record of summer temperature extended over the last millennium in Fennoscandia. Holocene 21:319–326

    Article  Google Scholar 

  • Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20:1175–1182

    Article  PubMed  Google Scholar 

  • Liu B, Li Y, Eckstein D, Zhu L, Dawadi B, Liang E (2013) Has an extending growing season any effect on the growth of Smith fir at the timberline on the southeastern Tibetan Plateau. Trees 27:1432–2285. doi:10.1007/s00468-012-0819-z

    Google Scholar 

  • Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt Forstl Bundesvers Wien 152:417–441

    Google Scholar 

  • Mäkinen H, Seo J-W, Nöid P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127:235–245

    Article  Google Scholar 

  • Mariaux A (1967–1968) Les cernes dans les bois tropicaux africains, nature et périodicité. Bois et Forêts des Tropiques No 113:3–14; No 114:23–37

    Google Scholar 

  • McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen M, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O (2003) Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene 13:831–841

    Article  Google Scholar 

  • McCarroll D, Tuovinen M, Campbell R, Gagen M, Grudd H, Jalkanen R, Loader NJ, Robertson I (2011) A critical evaluation of multi-proxy dendroclimatology in northern Finland. J Quat Sci 26:7–14

    Article  Google Scholar 

  • Mikola P (1962) Temperature and tree growth near the northern timberline. In: Kozlowski TT (ed) Tree growth. Ronald, New York, pp 265–287

    Google Scholar 

  • Mork E (1928) Die Qualität des Fichtenholzes unter besonderer Rücksichtnahme auf Schleif- und Papierholz. Der Papier-Fabrikant 26:741–747

    CAS  Google Scholar 

  • Munro MAR, Brown PM, Hughes MK, Garcia EMR (1996) Image-analysis of tracheid dimensions for dendrochronological use. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Proceedings of an international conference, Tucson, AZ, 17–21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, pp 843–851

    Google Scholar 

  • Nola P (1996) Climatic signal in earlywood and latewood of deciduous oaks in northern Italy. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Proceedings of an international conference, Tucson, AZ, 17–21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, pp 249–258

    Google Scholar 

  • Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring/climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 22:31–40

    Article  PubMed  Google Scholar 

  • Olano JM, Arzac A, García-Cervigón AI, von Arx G, Rozas V (2013) New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytol 188

    Google Scholar 

  • Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees 17:185–192

    Google Scholar 

  • Panyushkina P, Hughes M, Vaganov E, Munro M (2003) Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. Can J For Res 33:1905–1914

    Article  Google Scholar 

  • Park WK (1990) Development of anatomical tree-ring chronologies from southern Arizona conifers using image analysis. PhD dissertation, University of Arizona, Tucson, AZ

    Google Scholar 

  • Parker ML, Hennoch WES (1971) The use of Engelmann spruce latewood density for dendrochronological purposes. Can J For Res 1:90–98

    Article  Google Scholar 

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816

    Article  PubMed  Google Scholar 

  • Pensa M, Salminen H, Jalkanen R (2005) A 250-year-long height-increment chronology for Pinus sylvestris at the northern coniferous timberline: a novel tool for reconstructing past summer temperature? Dendrochronologia 22:75–81

    Article  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Polge H (1963) L’analyse densitométrique de clichés radiographiques: Une nouvelle méthode de détermination de la texture du bois. Annales de l’Ecole Nationale des Eaux et Forêts de la Station de Recherches et Experiences 20:530–581

    Google Scholar 

  • Prislan P, Koch G, Čufar K, Gričar J, Schmitt U (2009) Topochemical investigations of cell walls in developing xylem of beech (Fagus sylvatica L.). Holzforschung 63:482–490

    Article  CAS  Google Scholar 

  • Repo T, Zhang G, Ryyppö A, Rikala R, Vuorinen M (2000) The relation between growth cessation and frost hardening in Scots pines of different origins. Trees 14:456–464

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Gričar J, Seo J-W, Rathgeber CBK, Anfodillo T, Morin H, Levanič T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707

    Article  Google Scholar 

  • Rossi S, Morin H, Deslauriers A (2012) Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. Environ Exp Bot 63:2117–2163

    Article  CAS  Google Scholar 

  • Salminen H, Jalkanen R (2004) Does current summer temperature contribute to the final shoot length on Pinus sylvestris? A case study at the northern conifer timberline. Dendrochronologia 21:79–84

    Article  Google Scholar 

  • Salminen H, Jalkanen R (2007) Intra-annual height increment of Pinus sylvestris at high latitudes in Finland. Tree Physiol 27:1347–1353

    Article  PubMed  Google Scholar 

  • Salminen H, Jalkanen R, Lindholm M (2009) Summer temperature affects the ratio of radial and height growth of Scots pine in northern Finland. Ann For Sci 66:810

    Article  Google Scholar 

  • Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Comm Inst For Fenn 76:1–110

    Google Scholar 

  • Sass U, Eckstein D (1992) The annual vessel area of beech as an ecological indicator. Lundqua Rep 34:281–285

    Google Scholar 

  • Savidge RA, Barnett JR, Napier R (eds) (2000) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Schleser GH, Helle G, Lücke A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat Sci Rev 18:927–943

    Article  Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn 38:167–178

    Google Scholar 

  • Schulte PJ (2012) Vertical and radial profiles in tracheid characteristics along the trunk of Douglas-fir trees with implications for water transport. Trees 26:421–433

    Article  Google Scholar 

  • Schweingruber FH (2007) Wood structure and environment. Springer, Berlin

    Google Scholar 

  • Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schär E (1978) The x-ray technique as applied to dendroclimatology. Tree Ring Bull 38:61–91

    Google Scholar 

  • Seo J-W, Eckstein D, Schmitt U (2007) The pinning method: from pinning to data preparation. Dendrochronologia 25:79–86

    Article  Google Scholar 

  • Seo J-W, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U (2008) Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112

    Article  PubMed  Google Scholar 

  • Seo J-W, Salminen H, Jalkanen R, Eckstein D (2010) Chronological coherence between intra-annual height and radial growth of Scots pine (Pinus sylvestris L.) in the northern boreal zone of Finland. Balt For 16:57–65

    Google Scholar 

  • Seo J-W, Eckstein D, Jalkanen R, Schmitt U (2011) Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environ Exp Bot 72:422–431

    Article  Google Scholar 

  • Seo J-W, Aalto T, Jalkanen R, Eckstein D, Schmitt U, Fromm J (2012a) Bud break and intra-annual height growth dynamics of saplings and pole-stage trees of Scots pine: case study for a boreal forest in northern Finland. Balt For 18:144–149

    Google Scholar 

  • Seo J-W, Eckstein D, Jalkanen R (2012b) Screening various variables of cellular anatomy of Scots pines in subarctic Finland for climatic signals. IAWA J 33:417–429

    Google Scholar 

  • Sirén G (1961) Skogsgränstallen som indikator för klimafluktuationerna in norra Fennoskandien under historisk tid. Comm Inst For Fenn 53:1–66

    Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • Tardif J (1996) Earlywood, latewood and total ring width of a ring-porous species (Fraxinus nigra Marsh) in relation to climatic and hydrologic factors. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Proceedings of an international conference, Tucson, AZ, 17–21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, pp 315–324

    Google Scholar 

  • Taulavuori K, Sarala M, Taulavuori E (2010) Growth response of trees to Arctic light environment. Prog Bot 71:157–168

    Google Scholar 

  • Tomppo E, Tuomainen T, Heikkinen J, Henttonen H, Ihalainen A, Korhonen KT, Mäkelä H, Tonteri T (2005) Lapin metsäkeskuksen alueen metsävarat 1970–2003 [Forest resources in Lapland, 1970–2003]. Metsätieteen aikakauskija 2B:199–287

    Google Scholar 

  • Tuovinen M, McCarroll D, Grudd H, Jalkanen R, Los S (2009) Spatial and temporal stability of the climatic signal in northern Fennoscandian pine tree-ring width and maximum density. Boreas 38:1–12

    Article  Google Scholar 

  • Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039

    Article  PubMed  CAS  Google Scholar 

  • Vaganov EA, Terskov IA (1977) Tree growth analysis by tree-ring structure. Nauka Publishing House, Novosibirsk, USSR (in Russian)

    Google Scholar 

  • Vaganov EA, Shashkin AV, Sviderskaya IV, Vysotskaya LG (1985) Histometrical analysis of woody plant growth. Nauka Publishing House, Novosibirsk, USSR (in Russian)

    Google Scholar 

  • Vaganov EA, Naurazhaev MM, Schweingruber FH, Briffa KR, Moell M (1996) An 840-year tree-ring width chronology for Taimir as an indicator of summer temperature changes. Dendrochronologia 14:193–205

    Google Scholar 

  • Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Clim Res 17:63–72

    Article  Google Scholar 

  • von Wilpert K (1991) Intra-annual variation of radial tracheid diameters as monitor of site specific water stress. Dendrochronologia 9:95–113

    Google Scholar 

  • Watson E, Luckman BH (2004) Tree-ring-based mass-balance estimates for the past 300 years at Peyto Glacier, Alberta, Canada. Quat Res 62:9–18

    Article  Google Scholar 

  • Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009) Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann For Sci 66:402

    Article  PubMed  CAS  Google Scholar 

  • Wilmking M, Juday GP (2005) Longitudinal variation of radial growth of Alaska’s northern treeline – recent changes and possible scenarios for the 21st century. Glob Planet Change 47:282–300

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces opposite growth responses of white spruce at treeline in Alaska through temperature threshold. Glob Change Biol 10:1724–1736

    Article  Google Scholar 

  • Wilmking M, Sanders TGM, Zhang Y, Kenter S, Holzkämper S, Grittenden PD (2012) Effects of climate, site conditions, and seed quality on recent treeline dynamics in NW Russia: permafrost and lack of reproductive success hamper treeline advance? Ecosystems 15:1053. doi:10.1007/s10021-012-9565-8

    Article  CAS  Google Scholar 

  • Wilson R, Elling W (2004) Temporal instability in tree-growth/climate response in the lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees 18:19–28

    Article  Google Scholar 

  • Wimmer R (2002) Wood anatomical features in tree rings as indicators of environmental change. Dendrochronologia 20:21–36

    Article  Google Scholar 

  • Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus sylvestris L. J Exp Bot 22:670–687

    Article  Google Scholar 

  • Wolter KE (1968) A new method for marking xylem growth. For Sci 14:102–104

    Google Scholar 

  • Woodcock DW (1989) Climate sensitivity of wood-anatomical features of bur oak (Quercus macrocarpa). Can J For Res 19:639–644

    Article  Google Scholar 

  • Xu J, Lu J, Bao F, Evans R, Downes GM (2012a) Climate response of cell characteristics in tree rings of Picea crassifolia. Holzforschung. doi:10.1515/hf-2011-0144

    Google Scholar 

  • Xu J, Lu J, Bao F, Evans R, Downes G, Huang R, Zhao Y (2012b) Cellulose microfibril angle variation in Picea crassifolia tree rings improves climate signals on the Tibetan Plateau. Trees 26:1007–1016

    Article  Google Scholar 

  • Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees 14:223–229

    Article  Google Scholar 

  • Yonenobu H, Eckstein D (2006) Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophys Res Lett 33:L10701. doi:10.1029/2006GL026170

    Article  Google Scholar 

  • Zahner R (1963) Internal moisture stress and wood formation in conifers. For Prod J 13:240–247

    Google Scholar 

  • Zimmermann MH (1964) The formation of wood in forest trees. Academic, New York

    Google Scholar 

Download references

Acknowledgements

The studies were funded by the EU-projects PINE “Predicting Impacts on Natural Ecotones (EVK2 CT-2002-00136) and Millenium (Contract no: 017008) as well as by projects of the German Science Foundation (DFG) (Project nos FR 955/16-1 and WI 2680/2-1) and the Academy of Finland (SA138937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Wook Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seo, JW. et al. (2013). Climate Control of Wood Formation: Illustrated for Scots Pine at Its Northern Distribution Limit. In: Fromm, J. (eds) Cellular Aspects of Wood Formation. Plant Cell Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4_6

Download citation

Publish with us

Policies and ethics