Skip to main content

The Role of Abundance Estimates in Conservation Decision-Making

  • Chapter
  • First Online:
Applied Ecology and Human Dimensions in Biological Conservation

Abstract

Initial discussions about conservation of any species or population tend to include questions about just how many animals there are. Indeed, it is often assumed that abundance estimates are critically important to conservation, to the point where obtaining such estimates is sometimes viewed as a necessary prerequisite for management. At a minimum, this view produces a delay in management, and in the worst case, the monitoring of abundance comes to be equated with conservation. Abundance estimates can be important to conservation, but I believe that development of a clear idea of exactly how they are to be used in the conservation process should precede surveys designed to obtain them. In this chapter, I consider the explicit roles of abundance estimation in conservation, first focusing on the uses of such estimates in conservation programs and then turning to appropriate methods for obtaining those estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alldredge MW, Pollock KH, Simons TR (2006) Estimating detection probabilities from multiple-observer point counts. Auk 123:1172–1182

    Google Scholar 

  • Alldredge MW, Pollock KH, Simons TR, Collazo JA, Shriner SA (2007) Time of detection method for estimating abundance from point count surveys. Auk 124:653–664

    Article  Google Scholar 

  • Anderson DR, Burnham KP, White GC, Otis DL (1983) Density estimation of small-mammal populations using a trapping web and distance sampling methods. Ecology 64:674–680

    Article  Google Scholar 

  • Bellman R (1957) Dynamic programming. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Borchers DL, Buckland ST, Zucchini W (2002) Estimating animal abundance: closed populations. Springer, London

    Book  Google Scholar 

  • Borchers DL, Efford MG (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64:377–385

    Article  CAS  PubMed  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Oxford University Press, Oxford, UK

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2004) Advanced distance sampling. Oxford University Press, Oxford, UK

    Google Scholar 

  • Caughley G (1977) Analysis of vertebrate populations. Wiley, New York

    Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Chao A, Huggins RM (2005a) Modern closed-population capture–recapture models. In: Amstrup SC, McDonald TL, Manly BFJ (eds) Handbook of capture–recapture analysis. Princeton University Press, Princeton, NJ, pp 58–87

    Google Scholar 

  • Chao A, Huggins RM (2005b) Classical closed-population capture–recapture models. In: Amstrup SC, McDonald TL, Manly BFJ (eds) Handbook of capture–recapture analysis. Princeton University Press, Princeton, NJ, pp 22–35

    Google Scholar 

  • Cochran WG (1953) Sampling techniques. Wiley, New York, NY

    Google Scholar 

  • Cook RD, Jacobson JO (1979) A design for estimating visibility bias in aerial surveys. Biometrics 35:735–742

    Article  Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Crick HQP (2004) The impact of climate change on birds. Ibis 146(s1):48–56

    Article  Google Scholar 

  • Efford M (2004) Density estimation in live-trapping studies. Oikos 106:598–610

    Article  Google Scholar 

  • Farnsworth GL, Pollock KH, Nichols JD, Simons TR, Hines JE, Sauer JR (2002) A removal model for estimating detection probabilities from point count surveys. Auk 119:414–425

    Article  Google Scholar 

  • Farnsworth GL, Nichols JD, Sauer JR, Fancy FG, Pollock KH, Shriner SA, Simons TR (2005) Statistical approaches to the analysis of point count data: a little extra information can go a long way. In: Ralph CJ, Rich TD (eds.) Bird conservation implementation and integration in the Americas: proceedings of the 3rd international partners in flight conference, vol 2. Gen. Tech. Rep. PSW-GTR-191. Albany, CA: Pacific Southwest Research Station, Forest service, U.S. Department Agriculture, pp 736–743

    Google Scholar 

  • Gardner B, Reppucci J, Lucherini M, Royle JA (2010) Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies. Ecology 91:3376–3383

    Article  PubMed  Google Scholar 

  • Gould WR, Pollock KH (1997) Catch-effort maximum likelihood estimation of important population parameters. Can J Fisher Aqat Sc 54:890–897

    Google Scholar 

  • Johnson DH (2008) In defense of indices: the case of bird surveys. J Wildl Manag 72:857–868

    Article  Google Scholar 

  • Johnson FA, Breinenger DR, Duncan BW, Nichols JD, Runge MR, Williams BK (2011) A Markov decision process for managing habitat for Florida scrub-jays. J Fish Wildl Manag 2:234–246

    Article  Google Scholar 

  • Jolly GM (1965) Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52:225–247

    Article  CAS  PubMed  Google Scholar 

  • Karanth KU, Gopalaswamy AM, Kumar NS, Vaidyanathan S, Nichols JD, MacKenzie DI (2011) Monitoring carnivore populations at landscape scales: occupancy modeling of tigers from sign surveys. J Appl Ecol 48:1048–1056

    Article  Google Scholar 

  • Kissling ML, Garton EO (2006) Estimating detection probability and density from point-count surveys: a combination of distance and double-observer sampling. Auk 123:735–752

    Article  Google Scholar 

  • Lancia RA, Nichols JD, Pollock KH (1994) Estimating the number of animals in wildlife populations. In: Bookhout T (ed) Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, Maryland, pp 215–253

    Google Scholar 

  • Lancia RA, Kendall WL, Pollock KH, Nichols JD (2005) Estimating the number of animals in wildlife populations. In: Braun CE (ed) Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, Maryland, pp 106–153

    Google Scholar 

  • Lincoln FC (1930) Calculating waterfowl abundance on the basis of banding returns. Department of Agriculture Circular Number 342, U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408

    Article  Google Scholar 

  • Nichols JD, Williams BK (2006) Monitoring for conservation. Trends Ecol Evol 21:668–673

    Article  PubMed  Google Scholar 

  • Nichols JD, Thomas L, Conn PB (2009) Inferences about landbird abundance from count data: recent advances and future directions. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, New York, pp 201–235

    Chapter  Google Scholar 

  • Nichols JD, Williams BK (2013) Adaptive management. In: El-Shaarawi AH, Piegorsch WW (eds.) Encyclopedia of environmetrics. Wiley, Chichester, U.K. doi:10.1002/9780470057339.vnn037

  • O’Connell AF Jr, Nichols JD, Karanth KU (eds) (2010) Camera-traps in animal ecology: methods and analyses. Springer, Tokyo

    Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135

    Google Scholar 

  • Pinto GRM, Ferraz KMPM, Couto HTZ, Verdade LM (2006) Detectability of capybaras in forested habitats. Biota Neotropica 6(1). http://www.biotaneotropica.org.br/v6n1/pt/abstract?article+bn01906012006

  • Platt JR (1964) Strong inference. Science 146:347–353

    Article  CAS  PubMed  Google Scholar 

  • Pollock KH, Nichols JD, Simons TR, Farnsworth GR, Bailey LL, Sauer JR (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:1–15

    Article  Google Scholar 

  • Riddle JD, Stanislav SJ, Pollock KH, Moorman DE, Perkins FS (2010) Separating components of the detection process with combined methods, an example with Northern Bobwhite. J Wildl Manag 74:1319–1325

    Article  Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  • Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115

    Article  PubMed  Google Scholar 

  • Royle JA, Young KV (2008) A hierarchical model for spatial capture–recapture data. Ecology 89:2281–2289

    Article  PubMed  Google Scholar 

  • Royle JA, Nichols JD, Karanth KU, Gopalaswamy AM (2009) A hierarchical model for estimating density in camera trap studies. J Appl Ecol 46:118–127

    Article  Google Scholar 

  • Royle JA, Gardner B (2010) Hierarchical spatial capture–recapture models for estimating density from trapping arrays. In: O’Connell AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology. Springer, Tokyo, pp 163–190

    Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52:860–873

    Article  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters. MacMillan, New York

    Google Scholar 

  • Thompson SK (2002) Sampling. Wiley, New York

    Google Scholar 

  • Udevitz MS, Pollock KH (1991) Change-in-ratio estimators for populations with more than two subclasses. Biometrics 47:1531–1546

    Article  Google Scholar 

  • White GC, Anderson DR, Burnham KP, Otis DL (1982) Capture–recapture and removal methods for sampling closed populations. Los Alamos National Laboratory Publication LA-8787-NERP, Los Alamos, NM

    Google Scholar 

  • Williams BK (1997) Approaches to the management of waterfowl under uncertainty. Wildl Soc Bull 25:714–720

    Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego

    Google Scholar 

  • Williams BK, Szaro RC, Shapiro CD (2007) Adaptive management: the U.S. department of the interior technical guide. U.S. Department of the Interior, Washington, DC

    Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nichols, J.D. (2014). The Role of Abundance Estimates in Conservation Decision-Making. In: Verdade, L., Lyra-Jorge, M., Piña, C. (eds) Applied Ecology and Human Dimensions in Biological Conservation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54751-5_8

Download citation

Publish with us

Policies and ethics