Skip to main content

References

  • Chapter
Geothermics

Part of the book series: Universitext ((UTX))

  • 309 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References to the Introduction

  1. Aepinus, F. A.: De distributione calor, per tellum, St. Petersburg 1761.

    Google Scholar 

  2. Bischof, G.: Die Wärmelehre des Innern unseres Erdkörpers, Leipzig 1837.

    Google Scholar 

  3. Buch, L. von: Einige Bemerkungen über Quellen-Temperatur, Ann. Phys. Chem. 88 (= 12 Neue Folge), 403–418, 1828.

    Article  Google Scholar 

  4. Buffon, Gr. von: Epochen der Natur, aus dem Französischen Les époches de la nature (Paris 1780), Leipzig 1782.

    Google Scholar 

  5. Cassini de Thury, J. D.: Sur la température des souterrains de l’observatoire royal, Mémoires présentés par divers savants à l’académie Française, p. 511, 328–329, 1786.

    Google Scholar 

  6. Descartes, R.: Opera mathematica et philosophica, torn. I, principia philosophiae, Amsterdam 1692.

    Google Scholar 

  7. Fourier, M.: Théorie analytique de la chaleur, Paris 1822, dtsche Ausg. von B. Weinstein, Analytische Theorie der Wärme, Berlin 1884.

    Google Scholar 

  8. Hire, Ph. de la: in [5] Cassini de Thury.

    Google Scholar 

  9. Holmes, A.: Radioactivity and the Earth’s thermal history, Geol. Mag. 52, 60–71 1915.

    Article  Google Scholar 

  10. Holmes, A.: Radioactivity and the Earth’s thermal history, Geol. Mag. 52, 102–115, 1915.

    Article  Google Scholar 

  11. Hopkins, W: Researches in Geology, Philos. Trans. Roy. Soc. Lond. 129, 381–423, 1839;

    Google Scholar 

  12. ibd. 130, 193–208, 1840;

    Google Scholar 

  13. ibd. 132, 43–55, 1842.

    Article  Google Scholar 

  14. Humboldt, A. von: Kosmos, Bd. 1, 340fY., Stuttgart und Tübingen 1845.

    Google Scholar 

  15. Hunt, St.: The chemistry of the primeval Earth, Geol. Mag. 5, 49–59, 1868.

    Article  Google Scholar 

  16. Ingersoll, L. R. & Zobel, O. I.: Mathematical theory of heat conduction, Boston 1913.

    Google Scholar 

  17. Jeffreys, H.: On the Earth’s thermal history and some related geological phenomena, Gerl. Beitr. Geophys. 18, 1–29, 1927.

    Google Scholar 

  18. Kircher, A.: Mundus subterranus, Amsterdam 1665.

    Google Scholar 

  19. Klöden, K. F.: Über die Zunahme der Temperatur nach dem Innern der Erde, Jhrb. Min., Geogn., Geol. u. Petref. 2, 385–390, 1831.

    Google Scholar 

  20. Kupffer, A. T: Über die mittlere Temperatur der Luft und des Bodens auf einigen Punkten des östlichen Rußlands, Ann. Phys. Chem. 91 (= 15 Neue Folge), 159–192, 1829.

    Article  Google Scholar 

  21. Leibnitz, G. W. von: Protogaea sive de prima facie telluris et antiquissimae historie vestigiis, Göttingen 1749.

    Google Scholar 

  22. Liebenow, C.: Notiz über die Radiummenge der Erde, Phys. Ztschr. 5, 625–626, 1904.

    Google Scholar 

  23. Lyell, Ch.: Principles of geology, 3 Bde., London 1830–1833.

    Google Scholar 

  24. Newton, L: Philosophiae naturalis principia mathematica (1687), dtsche Ausg. Von J. Ph. Wolfers, mathematische Prinzipien der Naturlehre, Berlin 1872.

    Google Scholar 

  25. Parrot, G. F.: Grundriß der Physik der Erde und Geologie, Riga und Leipzig 1815.

    Google Scholar 

  26. Rive, A. de la: in: Poisson, Von den Ursachen der Temperatur des Erdballs, Ann. Phys. Chem. 115 (= 39 Neue Folge), 66–100, 1836.

    Article  Google Scholar 

  27. Strutt, R. J.: On the radioactive minerals, Proc. Roy. Soc. Lond., Ser. A, 76, 88–101, 1905.

    Article  Google Scholar 

  28. Thiene, H.: Temperatur und Zustand des Erdinnern, Jena 1907.

    Google Scholar 

For Advanced Studies to: 1. Physical Basic of Heat Transfer

  • Carslaw, H.S. & Jaeger, J. C.: Conduction of heat in solids, 2nd. ed., Oxford 1952.

    Google Scholar 

  • Tautz, H.: Wärmeleitung und Temperaturausgleich, Weinheim/Bergstr. 1971.

    Google Scholar 

References to: 2. Thermal Properties of Common Rocks

  1. Balling, N. P.: Geothermal models of the crust and the uppermost mantle of the Fennoscandian shield in south Norway and the Danish embayment, J. Geophys. 42, 237–256, 1976.

    Google Scholar 

  2. Birch, F. & Clark, H.: The thermal conductivity of rocks and its dependence upon temperature and composition, Am. J. Sci. 238, 529–558, 1940.

    Article  Google Scholar 

  3. Birch, F. & Clark, H.: The thermal conductivity of rocks and its dependence upon temperature and composition, Am. J. Sci. 238, 613–635, 1940.

    Article  Google Scholar 

  4. Bridgman, P.W.: The physics of high pressure, London (Bell & Sons) 1952.

    Google Scholar 

  5. Buntebarth, G.: Geophysikalische Untersuchungen über die Verteilung von Uran, Thorium und Kalium in der Erdkruste sowie deren Anwendung auf Temperaturberechnungen für verschiedene Krustentypen, Diss. TU Clausthal, Clausthal-Zellerfeld 1975.

    Google Scholar 

  6. Buntebarth, G.: Methoden zur Abschätzung der Wärmeflußdichte aus dem oberen Mantel, Geol. Rdschau 65, 809–819, 1976.

    Article  Google Scholar 

  7. Buntebarth, G. & Rybach, L.: Linear relationships between petrophysical properties and mineralogical constitution — preliminary results, Tectonophys. 75, 41–46, 1981.

    Article  Google Scholar 

  8. England, P.C.: Some thermal considerations of the Alpine metamorphism — past, present and future, Tectonophys. 46, 21–40, 1978.

    Article  Google Scholar 

  9. Fielitz, K.: Untersuchungen zur Temperaturabhängigkeit von Kompressions- und Scherwellengeschwindigkeiten in Gesteinen unter erhöhtem Druck, Diss. TU Clausthal, Clausthal-Zellerfeld 1971.

    Google Scholar 

  10. Fukao, Y., Mizutani, H. & Uyeda, S.: Optical absorption spectra at high temperatures and radiative thermal conductivity of olivines, Phys. Earth Planet. Int. 1, 57–62, 1968.

    Article  Google Scholar 

  11. Grubbe, K.; Hänel, R. & Zoth, G.: Determination of the vertical components of thermal conductivity by line source methods, in: Hänel, R. & Gupta (eds.), Results of the first workshop on standards in geothermics, 49–56, Stuttgart (Schweizerbart) 1983.

    Google Scholar 

  12. Holmes, A.: Radioactivity and the Earth’s thermal history, Geol. Mag. 52, 60–71 1915.

    Article  Google Scholar 

  13. Holmes, A.: Radioactivity and the Earth’s thermal history, Geol. Mag. 52, 102–112, 1915.

    Article  Google Scholar 

  14. Horai, K. & Simmons, G.: Thermal conductivity of rock forming minerals, Earth Planet. Sci. Lett. 6, 359–368, 1969.

    Article  Google Scholar 

  15. Hurtig, E. & Brugger, H.: Wärmeleitfähigkeitsmessungen unter einaxialem Druck, Tectonophys. 10, 67–77, 1970.

    Article  Google Scholar 

  16. Kanamori, H., Fuji, N. & Mizutani, H.: Thermal diffusivity measurement of rock- forming minerals from 300 to 1100 °K, J. Geophys. Res. 73, 595–605, 1968.

    Article  Google Scholar 

  17. Kappelmeyer, O. & Hänel, R.: Geothermics with special reference to applicaton, Berlin- Stuttgart (Gebrüder Borntraeger), 1974.

    Google Scholar 

  18. Kawada, K.: Studies of the thermal state of the Earth. The 15th paper: Variation of thermal conductivity of rocks, Bull. Earthquake Res. Inst. Tokyo 42, 631–647, 1964.

    Google Scholar 

  19. Physikhütte (Hrsg.: Hütte Gesellschaft f. Technische Information), Bd. II, 29. Aufl., S. 392 (Ernst & Sohn), Berlin-München-Düsseldorf, 1971.

    Google Scholar 

  20. Kobayashi, Y.: Anisotropy of thermal diffusivity in olivine, pyroxene and dunite, J. Phys. Earth 22, 359–373, 1974.

    Article  Google Scholar 

  21. Labhart, T. P. & Rybach, L.: Granite und Uranvererzungen in den Schweizer Alpen, Geolog. Rundschau 63, 135–147, 1974.

    Article  Google Scholar 

  22. Nafe, J. E. & Drake, C. L., M. Talwani, G. H. Sutton, J. L. Worzel: A crustal section across the Puerto Rico Trench, J. Geophys. Res. 64, 1548, 1959.

    Google Scholar 

  23. Rybach, L.: Wärmeproduktionsbestimmungen an Gesteinen der Schweizer Alpen, Beiträge zur Geologie der Schweiz, Geotechn. Serie, Lieferung 51, 1973.

    Google Scholar 

  24. Rybach, L.: Radioactive heat production in rocks and its relation to other petrophysical parameters, Pageoph. 114, 309–317, 1976.

    Article  Google Scholar 

  25. Rybach, L. & Buntebarth, G.: Heat generating radioelement in granitic magmas, J. Volcan. Geotherm. Resources 10, 395–404, 1981.

    Article  Google Scholar 

  26. Sass, J. H.: The thermal conductivity of fifteen feldspar specimens, J. Geophys. Res. 70, 4064–4065, 1965.

    Article  Google Scholar 

  27. Schatz, J. F. & Simmons, G.: Thermal conductivity of earth materials at high temperatures, Journ. of Geophys. Res. 77, 6966–6983, 1972.

    Article  Google Scholar 

  28. Schloessin, H. H. & Dvorak, Z.: Anisotropic Lattice thermal conductivity in Enstatite as a function of pressure and temperature, Geophys. J.R. Astr. Soc. 27, 499–516, 1972.

    Google Scholar 

  29. Schmucker, U.: Geophysical aspects of structure and composition of the earth, in: K. H. Wedepohl (ed.), Handbook of Geochemistry, Vol. 1, 134–226 (Springer), Berlin-Heidelberg-New York, 1969.

    Google Scholar 

  30. Seibold, U. & Gutzeit, W.: Untersuchungen der Druckabhängigkeit der Wärmeleitfähigkeit einiger Gesteine, Gerl. Beitr. Geophys. 83, 498–504, 1974.

    Google Scholar 

  31. Staudacher, W: Die Temperatur-Leitfähigkeit von natürlichem Olivin bei hohen Drucken und Temperaturen, Ztschr. f. Geophysik 39, 979–988, 1973.

    Google Scholar 

  32. Van der Molen, I.: The shift of the αβ transition temperature of quartz associated with the thermal expansion of granite at high pressure, Tectonophys. 73, 323–342, 1981.

    Article  Google Scholar 

  33. Wakita, H., Nagasawa, H., Uyeda, S. & Kuno, H.: Uranium, thorium and potassium contents of possible mantle materials, Geochem. J. 1, 183–198, 1967.

    Article  Google Scholar 

  34. Walsh, J. B. & Decker, E. R.: Effect of pressure and saturating fluid on the thermal conductivity of compact rock, J. Geophys. Res. 71, 3053–3061, 1966.

    Google Scholar 

  35. Wenk, H.-R. & Wenk, E.: Physical constants of Alpine rocks (density, porosity, specific heat, thermal diffusivity and conductivity), Schweiz. Mineral, und Petrogr. Mitt. 49, 343–357, 1969.

    Google Scholar 

For Advanced Studies to: 3. Analytical Treatment of Cooling in the Crust

  • Carslaw, H.S. & Jaeger, I. C.: Conduction of heat in solids, 2nd. ed., London (Oxford Univ. Press) 1959.

    Google Scholar 

  • Lovering, T. S.: Theory of heat conduction applied to geological problems, Bull. Geol. Soc. Am. 46, 69–94, 1935.

    Google Scholar 

  • Mundry, E.: Über die Abkühlung magmatischer Körper, Geol. Jb. 85, 755–766, 1968.

    Google Scholar 

  • Tautz, H.: Wärmeleitung und Temperaturausgleich, Weinheim/Bergstr. (Verlag Chemie) 1971.

    Google Scholar 

References to: 4. Thermal State of the Earth’s Interior

  1. Anderson, D. L.: Composition of the mantle and core, Ann. Rev. Earth Planet. Sci. 5, 179–202, 1977.

    Article  Google Scholar 

  2. Baer, A. J.: Geotherms, evolution of the lithosphere and plate tectonics, Tectonophys. 72, 203–227, 1981.

    Article  Google Scholar 

  3. Balke, K. D.: Geothermische und hydrogeologische Untersuchungen in der südlichen Niederrheinischen Bucht, Geol. Jb., C., Heft 5, Hannover 1973.

    Google Scholar 

  4. Balling, N. P.: Geothermal models of the crust and the uppermost mantle of the Fennoscandian shield in south Norway and the Danish embayment, J. Geophys. 42, 237–256, 1976.

    Google Scholar 

  5. Birch, F.: Flow of heat in the Front Range, Colorado, Bull. Geol. Soc. Am. 61, 567–630, 1950.

    Article  Google Scholar 

  6. Bodmer, Ph., England, P. C., Kissling, E. & Rybach, L.: On the correction of subsurface temperature measurements for the effects of topographic relief, part II: Application to temperature measurements in the central Alps, in: V. Čermák & L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 78–87, (Springer), Berlin-Heidelberg-New York 1979.

    Google Scholar 

  7. Borchert, H.: Zur Petrologie der Lithosphere in ihrer Beziehung zu geophysikalischen Diskontinuitäten, auch der Gesamterde, Gerl. Beitr. Geophys. 76, 257–277, 1967.

    Google Scholar 

  8. Boschi, E.: Melting of iron, Geophys. J. Roy. Astron. Soc. 38, 327–334, 1974.

    Google Scholar 

  9. Bullard, E. C.: The disturbance of the temperature gradient in the earth’s crust by inequalities of height, Month. Not. Roy. Astron. Soc, Geophys. suppl. 4, 360–362, 1940.

    Google Scholar 

  10. Buntebarth, G.: Geophysikalische Untersuchungen über die Verteilung von Uran, Thorium und Kalium in der Erdkruste sowie deren Anwendung auf Temperaturberechnungen für verschiedene Krustentypen, Diss. TU Clausthal, Clausthal-Zellerfeld 1975.

    Google Scholar 

  11. Buntebarth, G.: Methoden zur Abschätzung der Wärmeflußdichte aus dem oberen Mantel, Geol. Rdschau 65, 809–819, 1976.

    Article  Google Scholar 

  12. Buntebarth, G.: The degree of metamorphism of organic matter in sedimentary rocks as a paleogeothermometer, applied to the Upper Rhinegraben, in: L. Rybach & L. Stegena (Hrsg.), Geothermics and Geothermal Energy, 83–91 (Birkhäuser), Basel 1978.

    Google Scholar 

  13. Buntebarth, G. & Schopper, J. R.: Heat flow caused by water migration along faults in dependence on petrophysical parameters, Proc. Int. Congr. Thermal Waters, Geotherm. Energy and Vulcan. Mediterr. Area, Oct. 5–10, 1976; Vol. II, 41–49, Athen 1976.

    Google Scholar 

  14. Buntebarth, G. & Teichmüller, R.: Zur Ermittlung der Paläotemperaturen im Dach des Bramscher Intrusivs aufgrund von Inkohlungsdaten, Fortschr. Geol. Rhld. u. Westf. 27, 171–182, 1979.

    Google Scholar 

  15. Čermák, V: Heat flow map of Europe, in: V Čermák & L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 3–40, (Springer), Berlin-Heidelberg-New York 1979.

    Google Scholar 

  16. Chapman, D. S., Pollack, H. N. & Cermák, V: Global heat flow with special reference to the region of Europe, in: V Čermák & L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 41–48, (Springer), Berlin-Heidelberg-New York 1979.

    Google Scholar 

  17. Crough, S. T. & Thompson, G. A.: Thermal model of continental lithosphère, J. Geophys. Res. 81, 4857–4862, 1976.

    Article  Google Scholar 

  18. Davis, E. E. & Lister, C. R. B.: Fundamentals of ridge topography, Earth Planet. Sci. Lett. 21, 405–413, 1974.

    Article  Google Scholar 

  19. Davis, E. E. & Lister, C. R. B.: Heat flow measured over the Juan de Fuca ridge: evidence for widespread hydrothermal circulation in a highly heat transportive crust, J. Geophys. Res. 82, 4845–4860, 1977.

    Article  Google Scholar 

  20. Davies, G. F.: Review of oceanic and global heat flow estimates, Rev. Geoph. Space Phys. 18, 718–722, 1980.

    Article  Google Scholar 

  21. Dietz, R. S.: Continent and ocean basin evolution by spreading of the sea floor, Nature 190, 854–857, 1961.

    Article  Google Scholar 

  22. Dorf, E.: The use of fossil plants in paleoclimatic interpretation, in: A. E. M. Nairn (ed.), 13–31, (Interscience), London-New York-Sydney 1964.

    Google Scholar 

  23. Eaton, J. P. & Murata, K. J.: How volcanos grow, Science 132, 925–938, 1960.

    Article  Google Scholar 

  24. England, P. C.: On the correction of subsurface temperature measurements for the effects of topographic relief, part I: Corrections in terrains with high relief, in: V Čermák & L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 74–77, (Springer), Berlin-Heidelberg-New York 1979.

    Google Scholar 

  25. Fowler, A. C.: On the thermal state of the earth’s mantle, J. Geophys. 53, 42–51, 1983.

    Google Scholar 

  26. Frenzel, B.: Die Klimaschwankungen des Eiszeitalters, (Vieweg), Braunschweig 1967.

    Google Scholar 

  27. Giesel, W. & Holz, A.: Das anomale geothermische Feld in Salzstöcken — Quantitative Deutung an einem Beispiel, Kali u. Steinsalz 5, 272–274, 1970.

    Google Scholar 

  28. Gilvarry, J. J.: Temperatures in the Earth’s interior, J. Atmosph. Terrestr. Phys. 10, 84, 1957.

    Article  Google Scholar 

  29. Graham, E. K. & Dobrzykowski, D.: Temperatures in the mantle as inferred from simple compositional models, Am. Mineral. 61, 549–559, 1976.

    Google Scholar 

  30. Hänel, R.: Untersuchungen zur Bestimmung der terrestrischen Wärmestromdichte in Binnenseen, Diss. TU Clausthal, Clausthal-Zellerfeld 1968.

    Google Scholar 

  31. Hänel, R.: Eine neue Methode zur Bestimmung der terrestrischen Wärmestromdichte in Binnenseen, Ztschr. Geophys. 36, 725–742, 1970.

    Google Scholar 

  32. Hänel, R.: A critical review of heat flow measurements in sea and lake bottom sediments, in: V. Čermák & L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 49–73, (Springer), Berlin-Heidelberg-New York 1979.

    Google Scholar 

  33. Hänel, R. & Gupta, M. (eds.): Results of the first workshop on standards in geothermics, Stuttgart (Schweizerbart) 1983.

    Google Scholar 

  34. Hess, H. H.: History of ocean basins, in: Engel, A. E. J., H. L. James & Leonard, B. F. (eds.), Petrologic studies, a volume in honor of A. F. Buddington, 599–620, (Geol. Soc. Am.) Boulder 1962.

    Google Scholar 

  35. Higgins, G. & Kennedy, G. C.: The adiabatic gradient and the melting point gradient in the core of the Earth, J. Geophys. Res. 76, 1870–1878, 1971.

    Article  Google Scholar 

  36. Holmes, A.: Radioactivity and Earth movements, Trans. Geol. Soc. Glasgow 18, III, 559–606, 1931.

    Google Scholar 

  37. Holmes, A.: The machinery of continental drift: the search for a mechanism, in: Principles of physical geology, 505–509 (Nelson) London 1944.

    Google Scholar 

  38. Honda, S. & Yeda, S.: Thermal process beneath subduction zones, abstract in: IUGG interdisciplinary symposia, Vol. 1, 23, IUGG XVIII General Assembly, Hamburg 1983.

    Google Scholar 

  39. Horváth, F., Bodri, L. & Ottlik, P.: Geothermics of Hungary and the tectonophysics of the Pannonian basin “red spot”, in: V Čermák & L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 206–217, (Springer), Berlin-Heidelberg-New York 1979.

    Google Scholar 

  40. Hurtig, E. & Cermák, V: Mapping of the heat flow pattern in Europe, Rev. Roum. Géol. Géophys. et Géogr. Géophysique 22, 73–82, Bucarest 1978.

    Google Scholar 

  41. Hurtig, E. & Oelsner, Chr.: Heat flow, temperature distribution and geothermal models in Europe: some tectonic implications, Tectonophys. 41, 147–156, 1977.

    Article  Google Scholar 

  42. Jacobs, J. A.: The Earth’s core, (Acad. Press) London-New York-San Francisco 1975.

    Google Scholar 

  43. Jaupart, C., Sclater, J. G. & Simmons, G.: Heat flow studies: constraints on the distribution of uranium, thorium and potassium in the continental crust, Earth Planet. Sci. Lett. 52, 328–344, 1981.

    Google Scholar 

  44. Jeffreys, H.: The disturbance of the temperature gradient in the Earth’s crust by inequalities of height, Mont. Not. Roy. Astron. Soc. Geophys. suppl. 4, 309–312, 1940.

    Google Scholar 

  45. Kappelmeyer, O. & Hänel, R.: Geothermics with special reference to application, Berlin-Stuttgart (Gebrüder Borntraeger) 1974.

    Google Scholar 

  46. Kertz, W.: Einführung in die Geophysik I, (Bibliographisches Institut) Mannheim 1969.

    Google Scholar 

  47. Lachenbruch, A. H.: Rapid estimation of the topographic disturbance to superficial thermal gradients, Rev. Geophys. 6, 365–400, 1968.

    Article  Google Scholar 

  48. Lees, C. H.: On the shapes of the isogeotherms under mountain ranges in radioactive districts, Proc. Roy. Soc. Ser. A83, 339–346, 1910.

    Article  Google Scholar 

  49. Le Pichon, X.: Sea-floor spreading and continental drift, J. Geophys. Res. 73, 3661–3705, 1968.

    Article  Google Scholar 

  50. Lindquist, G.: Heat flow density measurements in the bottom sediment of some lakes in north Sweden, Doctoral Thesis, (1983:30D), Luleå Univ., Luleå/Sweden 1983.

    Google Scholar 

  51. Lister, C. R. B.: Estimators for heat flow and deep rock properties based on boundary layer theory, Tectonophys. 41, 157–171, 1977.

    Article  Google Scholar 

  52. Morgan, W. J.: Convection plumes in the lower mantle, Nature 230, 42–43, 1971.

    Article  Google Scholar 

  53. Möller, F.: Einführung in die Meteorologie, Bd. 2: Physik der Atmosphäre (Bibliographisches Institut) Mannheim-Wien-Zürich 1973.

    Google Scholar 

  54. Mundry, E.: Berechnung des gestörten geothermischen Feldes mit Hilfe eines Relaxationsverfahrens, Z. Geophys. 32, 157–162, 1966.

    Google Scholar 

  55. Parker, R. L. & Oldenburg, D. W.: Thermal model of ocean ridges, Nature Phys. Sci. 242, 137–139, 1973.

    Article  Google Scholar 

  56. Parson, B. & Sclater, J. G.: An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res. 82, 803–827, 1977.

    Article  Google Scholar 

  57. Pilger, A., Rosier, A. & Schwan, W.: Zeitlich-tektonische Zusammenhänge bei der Plattentektonik, Clausthaler Geol. Abh. 17, (E. Pilger), Clausthal-Zellerfeld 1974.

    Google Scholar 

  58. Pilger, A. & Rosier, A.: Afar between continental and oceanic rifting, (Schweizerbart) Stuttgart 1976.

    Google Scholar 

  59. Pollack, H. N. & Chapman, D. S.: Mantle heat flow, Earth Planet. Sci. Lett. 34, 174–184, 1977.

    Article  Google Scholar 

  60. Polyak, B. G. & Smirnov, Ya. B.: Heat flow on continents, Doklady of Acad. Sci. USSR, Earth Sci. Sect. 168 (engl, transl.) 26–29, 1966.

    Google Scholar 

  61. Reynolds, R. T. & Summers, A. L.: Calculations on the composition of the terrestrial planets, J. Geophys. Res. 74, 2494–2511, 1969.

    Article  Google Scholar 

  62. Ringwood, A. E.: Phase transformations and the constitution of the mantle, Phys. Earth Planet. Int. 3, 109–155, 1970.

    Article  Google Scholar 

  63. Ringwood, A. E. & Major, A.: The system Mg2SiO4 —Fe2SiO4 at high pressures and temperatures, Phys. Earth Planet. Int. 3, 89–108, 1970.

    Article  Google Scholar 

  64. Roy, R. F., Blackwell, D. D. & Birch, F.: Heat generation of plutonic rocks and continental heat flow provinces, Earth Planet. Sci. Lett. 5, 1–12, 1968.

    Article  Google Scholar 

  65. Rybach, L. & Muffler, L. J. P.: Geothermal systems — principles and case histories, Chichester-New York-Brisbane-Toronto (J. Wiley & Sons) 1981.

    Google Scholar 

  66. Savin, S. M.: The history of the Earth’s surface temperature during the past 100 million years, Ann. Rev. Earth Planet. Sci. 5, 319–355, 1977.

    Article  Google Scholar 

  67. Schönenberg, R.: Einführung in die Geologie Europas (Rombach) Freiburg 1971.

    Google Scholar 

  68. Schroth, G. J.: A new probe for the in situ determination of the heat flow density in shallow cased boreholes, in: Hänel, R. & M. Gupta (eds.), Results of the lst-workshop on standards in geothermics, 5–16, Stuttgart (Schweizerbart) 1983.

    Google Scholar 

  69. Schubert, G., Froidevaux, C. & Yuen, D. A.: Oceanic Lithosphere and asthenosphere: thermal and mechanical structure, J. Geophys. Res. 81, 3525–3540, 1976.

    Article  Google Scholar 

  70. Schwarzbach, M.: Das Klima der Vorzeit — Eine Einführung in die Paläoklimatologie, 3. Aufl., (Enke) Stuttgart 1974.

    Google Scholar 

  71. Sclater, J. G. & Crowe, J.: On the reliability of oceanic heat flow averages, J. Geophys. Res. 81, 2997–3006, 1976.

    Article  Google Scholar 

  72. Sclater, J. G.; Crowe, J. & Anderson, R. N.: On the reliability of oceanic heat flow averages, J. Geophys. Res. 81, 2997–3006, 1976.

    Article  Google Scholar 

  73. Sclater, J. G. & Francheteau, J.: The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth, Geophys. J. Roy. Astron. Soc. 20, 509–542, 1970.

    Google Scholar 

  74. Sclater, J. G., Anderson, R. N. & Bell, M. L.: Elevation of ridges and evolution of the central eastern Pacific, J. Geoph. Res. 76, 7888–7915, 1971.

    Article  Google Scholar 

  75. Sclater, J. G., Jaupart, C. & Galson, D.: The heat flow through oceanic and continental crust and the heat loss of the earth, Rev. Geophys. Space Phys. 18, 269–311, 1980.

    Article  Google Scholar 

  76. Smith, G. D.: Numerische Lösung von partiellen Differentialgleichungen, (Vieweg) Braunschweig 1970.

    Google Scholar 

  77. Solomon, S. C.: Geophysical constraints on radial and lateral temperature variations in the upper mantle, Am. Mineral. 61, 788–803, 1976.

    Google Scholar 

  78. Stacey, F. D.: Physical properties of the Earth’s core, Geophys. Surv. 1, 99–119, 1972.

    Article  Google Scholar 

  79. Stacey, F. D.: A thermal model of the Earth, Phys. Earth Planet. Int. 15, 341–348, 1977.

    Article  Google Scholar 

  80. Stegena, L.: Migration und Geothermik im Ungarischen Becken, Vortr. IV. Int. Wiss. Conf. Chem. u. Phys. Probleme d. Erkundung u. Förderung von Erdöl und Erdgas, I, 115–119, Prag 1966.

    Google Scholar 

  81. Tautz, H.: Wärmeleitung und Temperaturausgleich, Weinheim/Bergstr. (Verlag Chemie) 1971.

    Google Scholar 

  82. Teichmüller, M. & Teichmüller, R.: Zur geothermischen Geschichte des Oberrhein-Grabens. Zusammenfassung und Auswertung eines Symposiums, Fortschr. Geol. Rhld. u. Westf. 27, 109–120, 1979.

    Google Scholar 

  83. Tozer, D. C.: The electrical properties of the Earth’s interior, in: L. H. Ahrens et al. (Hrsg.), Physics and Chemistry of the Earth, Vol. 3, 414–436, (Pergamon Press) New York 1959.

    Google Scholar 

  84. von Herzen, R. P. & Maxwell, A.: The measurement of thermal conductivity of deep sea sediments by a needle probe method, J. Geophys. Res. 64, 1557–1563, 1959.

    Article  Google Scholar 

  85. Werner, D.: Probleme der Geothermik am Beispiel des Rheingrabens, Diss. Univ. Karlsruhe, Karlsruhe 1975.

    Google Scholar 

  86. Werner, D. & Kley, W.: Problems of heat storage in aquifers, J. Hydrol. 34, 35–43, 1977.

    Article  Google Scholar 

  87. Werner, D. & Parini, M.: The geothermal anomaly of Landau/Pfalz: An attempt of interpretation, J. Geophys. 48, 28–33, 1980.

    Google Scholar 

  88. Wyllie, P. J.: Crustal anatexis: an experimental review, Tectonophys. 43, 41–71, 1977.

    Article  Google Scholar 

  89. Yefimov, A. V, Kutasov, I. M. & Shipitsina, L. I.: Zone of influence of ground water sources on the temperature field of bottom deposits, Izv., Earth Phys. (engl, transl.), 90–95, 1975.

    Google Scholar 

References to: 5. Methods for Determining Temperatures

  1. Ádám, A.: Results of deep electromagnetic investigations, in: A. Ádám (Hrsg.), Geoelectrical and géothermie studies, 547–560, (Akad. Kiadó) Budapest 1976.

    Google Scholar 

  2. Albright, J.: A new and more accurate method for the direct measurement of earth temperature gradient in deep boreholes, Proc. 2nd U.N. Intern. Symp., Development and Use of Geothermal Resources, Vol. 2, 847–851, Washington 1976.

    Google Scholar 

  3. Angenheister, G. & Soffel, H.: Gesteinsmagnetismus und Paläomagnetismus, Studienhefte zur Physik des Erdkörpers 1, (Borntraeger) Berlin-Stuttgart 1972.

    Google Scholar 

  4. Archie, G. E.: The electrical resistivity log as an aid in determinating some reservoir characteristics, Trans. AIME, Petrol. Br. 146, 54–62, 1942.

    Google Scholar 

  5. Banno, S. & Matsui, Y.: Eclogite types and partition of Mg, Fe, and Mn between clinopyroxene and garnet, Proc. Japan Acad. Tokyo 41, 716–721, 1965.

    Google Scholar 

  6. Bethke, P. M. & Barton jr, P. B.: Distribution of some minor elements between coexisting sulfide minerals, Economic Geol. 66, 140–163, 1971.

    Article  Google Scholar 

  7. Borchert, M.: Ozeane Salzlagerstätten, (Borntraeger) Berlin 1959.

    Google Scholar 

  8. Bosum, W., Hahn, A., Kind, E. G. & Pucher, P.: Geomagnetic anomalies in geothermal areas — Rhine Graben and Urach area -, Seminar on Geothermal Energy, Vol. I, 277–295, (Kommission der Europäischen Gemeinschaften, EUR 5920), Brüssel 1977.

    Google Scholar 

  9. Boyd, F. R.: A pyroxene geotherm, Geochim. Cosmochim. Acta 27, 2533–2546, 1973.

    Article  Google Scholar 

  10. Braitsch, O. & Herrmann, A. G.: Zur Geochemie des Broms in salinaren Sedimenten, Teil II: Die Bildungstemperaturen primärer Sylvin- und Carnallit-Gesteine, Geochim. Cosmochim. Acta. 28, 1081–1109, 1964.

    Article  Google Scholar 

  11. Bullard, E. C.: The time necessary for a borehole to attain temperature equilibrium, Geophys. Suppl. to the Month. Not. R.A.S. London 5, 127–130, 1947.

    Google Scholar 

  12. Buntebarth, G.: Über die Größe der thermisch bedingten Bouguer-Anomalie in den Alpen, Ztschr. f. Geophys. 39, 109–114, 1973.

    Google Scholar 

  13. Buntebarth, G.: The degree of metamorphism of organic matter in sedimentary rocks as a paleogeothermometer, applied to the Upper Rhine Graben, in: L. Rybach & L. Stegena (Hrsg.), Geothermics and Geothermal Energy, 83–91, (Birkhäuser) Basel 1978.

    Google Scholar 

  14. Buntebarth, G.: Eine empirische Methode zur Berechnung von paläogeothermischen Gradienten aus dem Inkohlungsgrad organischer Einlagerungen in Sedimentgesteinen mit Anwendung auf den mittleren Oberrheingraben, Fortschr. Geol. Rhld. u. Westf. 27, 97–108, 1979.

    Google Scholar 

  15. Buntebarth, G.: Geothermal history estimated from the coalification of organic matter, Tectonophys. 83, 101–108, 1982.

    Article  Google Scholar 

  16. Buntebarth, G. & Teichmüller, M.: Ancient heat flow density estimated from the coalification of organic matter in the borehole Urach 3 (SW-Germany) in: Hänel, R. (ed.), The Urach geothermal project, 89–95, Stuttgart (Schweizerbart) 1982.

    Google Scholar 

  17. Buntebarth, G., Koppe, I. & Teichmüller, M.: Paleogeothermics in the Ruhr basin, in: V. Čermák & R. Hänel (eds.), Geothermics and geothermal energy, 45–55, Stuttgart (Schweizerbart) 1982.

    Google Scholar 

  18. Cermák, V.: Heat flow in the Upper Silesian coal basin, Pageoph. 69, 119–130, 1968.

    Article  Google Scholar 

  19. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C.: Revised carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am. 64, 1315–1325, 1953.

    Article  Google Scholar 

  20. Fielitz, K.: Elastische Wellengeschwindigkeiten in verschiedenen Gesteinen unter hohem Druck und bei Temperaturen bis 750 °C, Z. f. Geophys. 37, 943–956, 1971.

    Google Scholar 

  21. Fournier, R. O.: Application of water geochemistry to geothermal exploration and reservoir engineering, in: Rybach, L. & Muffler, L. J. P.: Geothermal Systems: principles and case histories, 109–143, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  22. Fournier, R. O. & Rowe, J. J.: Estimation of underground temperatures from silica content of water from hot springs and wet-steam wells, Am. J. Sci. 264, 685–697, 1966.

    Article  Google Scholar 

  23. Fournier, R. O. & Truesdell, A. H.: An empirical Na —K —Ca geothermometer for natural waters, Geochim. Cosmochim. Acta 37, 1255–1276, 1973.

    Article  Google Scholar 

  24. Fournier, R. O., White, D. E. & Truesdell, A. H.: Geochemical indicators of subsurface temperatures — part 1, basic assumptions, J. Res. US Geol. Survey 2, 259–262, 1974.

    Google Scholar 

  25. Giese, P.: Die Temperaturverteilung in der Erdkruste des Alpenvorlandes und der Alpen, abgeschätzt aus tiefenseismischen Beobachtungen, Schweiz. Min. Petr. Mitt. 50, 597–610, 1970.

    Google Scholar 

  26. Goldsmith, J. R. & Newton, R. C.: P-T-X relations in the system CaCO3-MgCO3 at high temperatures and pressures, Am. J. Sci. 267-A, 160–190, 1969.

    Google Scholar 

  27. Goldstein, N. E. & Paulsson, B.: Interpretation of gravity surveys in Grass and Buena Vista valleys, Nevada, Geothermics 7, 29–50, 1978.

    Article  Google Scholar 

  28. Günther, R., Kappelmeyer, O. & Kronberg, P.: Zur Prospektion auf geothermale Anomalien, Erfahrungen einer Modelluntersuchung in Polichnitos, Lesbos (Griechenland), Geol. Rundsch. 66, 10–33, 1977.

    Article  Google Scholar 

  29. Hänel, R.: Bericht über die Berechnung und Darstellung von Temperaturen aus geochemischen Thermometern auf dem Gebiet der Bundesrepublik Deutschland, Nieders. Landesamt f. Bodenforschung, Arch. Nr. 78249, Hannover 1977.

    Google Scholar 

  30. Hahn, A., Kind, E. G. & Mishra, D. C.: Depth estimation of magnetic sources by means of fourier amplitude spectra, Geophys. Prosp. 24, 287–308, 1976.

    Article  Google Scholar 

  31. Harker, R. I. & Tuttle, O. F.: Studies in the system CaO-MgO-CO2, P.2: Limits of solid solution along the binary join, CaCO3 — MgCO3, Am. J. Sci. 235, 274–282, 1955.

    Article  Google Scholar 

  32. Hedemann, H.-A.: Beiträge zur Geothermik aus Tiefbohrungen, Freib. Forsch.-hefte, C 238: Methoden und Ergebnisse geothermischer Untersuchungen, 63–77, 1968.

    Google Scholar 

  33. Hoefs, J.: Stable isotope geochemistry, (Springer) Berlin-Heidelberg-New York 1973.

    Google Scholar 

  34. Hoover, D. B., Long, C. L. & Senterfit, R. M.: Audiomagneto telluric investigations in geothermal areas, Geophys. 43, 1501–1514, 1978.

    Article  Google Scholar 

  35. Irving, A. J.: Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia, J. Petrol. 15, 1–40, 1974.

    Google Scholar 

  36. Irving, A. J.: On the validity of paleogeotherms determined from xenolith suites in basalts and kimberlites, Am. Mineral. 61, 638–642, 1976.

    Google Scholar 

  37. Jin, D. J.: True-temperature determination of geothermal reservoirs, Geoexplor. 15, 1–9, 1977.

    Article  Google Scholar 

  38. Kahle, H. G. & Werner, D.: Gravity and temperature anomalies in the wake of drifting continents, Tectonophys. 29, 487–504, 1975.

    Article  Google Scholar 

  39. Kappelmeyer, O. & Hänel, R.: Geothermics with special reference to application, (Born-traeger) Berlin-Stuttgart 1974.

    Google Scholar 

  40. Karweil, J.: Die Metamorphose der Kohlen vom Standpunkt der physikalischen Chemie, Z. deutsch, geol. Ges. 107, 132–139, 1955.

    Google Scholar 

  41. Kolesar, P. T. & Degraff, J. V.: A comparison of the silica and Na —K —Ca geothermometers for thermal springs in Utah, Geothermics 6, 221–226, 1978.

    Article  Google Scholar 

  42. Lachenbruch, A. H. & Brewer, H. C.: Dissipation of the temperature effect of drilling a well in arctic Alaska, Bull. Geol. Survey N 1083-C, 73, 1959.

    Google Scholar 

  43. Lee, T.-Ch.: On shallow-hole temperature measurements — a test study in the Salton Sea geothermal field, Geophys. 42, 572–583, 1977, 8 fig., 3 tabl.

    Article  Google Scholar 

  44. Lopatin, N. W.: Temperature and geologic time as factor in coalification (engl, transl.), Acad. Nauk SSR, Izv., Ser. Geol. 3, 95–106, 1971.

    Google Scholar 

  45. MacGregor, I. D.: The system MgO-Al2O3-SiO2: Solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions, Am. Mineral. 59, 110–119, 1974.

    Google Scholar 

  46. McKenzie, D.: The variation of temperature with time and hydrocarbon maturation in sedimentary basins formed by extension, Earth Planet. Sci. Lett. 55, 87–98, 1981.

    Article  Google Scholar 

  47. Middleton, M. F.: The subsidence and thermal history of the Bass basin, southeastern Australia, Tectonophys. 87, 383–397, 1982.

    Article  Google Scholar 

  48. Middleton, M. F. & Schmidt, P. W.: Paleothermometry of the Sydney basin, J. Geophys. Res. 87, B, 5351–5359, 1982.

    Article  Google Scholar 

  49. Mori, T. & Green, D. H.: Subsolidus equilibria between pyroxenes in the CaO —MgO —SiO9 system at high pressures and temperatures, Am. Mineral. 61, 616–625, 1976.

    Google Scholar 

  50. Nielson, H.: Sulfur isotopes, in: E. Jäger & J. C. Hunziker (Hrsg.), Lectures in isotope geology, 283–312, (Springer) Berlin-Heidelberg-New York 1979.

    Chapter  Google Scholar 

  51. Ogawa, K.: Gravimetric survey at the southern part of Izu, preliminary survey for geothermal exploration, Bull. Geol. Survey Japan 28, 35–44, 1977.

    Google Scholar 

  52. Ohara, M. J. & Yarwood, G.: High pressure-temperature point of a Archaean geotherm, implied magma genesis by crustal anatexis, and consequences for garnet-pyroxene thermometry and barometry, Phil. Trans. R. Soc. London A 288, 441–456, 1978.

    Article  Google Scholar 

  53. O’Neil, J. R.: Stable isotope geochemistry of rocks and minerals, in: E. Jäger & J. C. Hunziker (Hrsg.), Lectures in isotope geology, 235–263, (Springer) Berlin-Heidel-berg-New York 1979.

    Chapter  Google Scholar 

  54. Powell, R.: The thermodynamics of pyroxene geotherms, Phil. Trans. R. Soc. London A 288, 457–469, 1978.

    Article  Google Scholar 

  55. Puhan, D.: Metamorphic temperature determined by means of the dolomite-calcite solves geothermometer — examples from the central Damara orogen (South West Africa), Contrib. Mineral. Petrol. 58, 23–28, 1976.

    Article  Google Scholar 

  56. Puhan, D.: Metamorphism of siliceous dolomites of the central and southern part of the Damara orogen, in: H. Martin & F. W. Eder (eds.), Intracontinental fold belts, 767–784, Berlin-Heidelberg-New York-Tokyo (Springer) 1983.

    Chapter  Google Scholar 

  57. Quist, A. S. & Marshall, W. I.: Electrical conductances of aqueous sodium chloride solutions from 0 to 800 °C and at pressures to 4000 bars, J. Phys. Chem. 72, 684–706, 1968.

    Article  Google Scholar 

  58. Râheim, A. & Green, D. H.: Experimental determination of the temperature and pressure dependence of the Fe — Mg partition coefficient for coexisting garnet and clinopyroxene, Contrib. Mineral. Petrol. 48, 179–203, 1974.

    Article  Google Scholar 

  59. Rink, M. & Schopper, J. R.: Interface conductivity of saturated porous media and its relation to structure, Proc. RILEM-IUPAC Intern. Symp. “Pore Structure and properties of materials”, final report, Vol. 2, C/311-C/320, Prag 1973.

    Google Scholar 

  60. Sabins, F. F. jr.: Remote sensing — principles and interpretation, (Freeman) San Francisco 1978.

    Google Scholar 

  61. Schmucker, U.: Conductivity anomalies, with special reference to the Andes, in: Runcorn, S. K. (Hrsg.), The application of modern physics to the earth and planetary interiors, 125–138, (Wiley-Interscience) London-New York-Sydney-Toronto 1969.

    Google Scholar 

  62. Shuey, R. T., Schellinger, D. K., Tripp, A. C. & Alley, L. B.: Curie depth determination from areomagnetic spectra, Geophys. J. Roy. Astr. Soc. 50, 75–101, 1977.

    Google Scholar 

  63. Sommer, J.: Der Einfluß der Bildung fluider Phasen in natürlichen Gesteinen auf das Ausbreitungsverhalten elastischer Wellen, Diss. TU Clausthal, Clausthal-Zellerfeld 1979.

    Google Scholar 

  64. Swanberg, Ch. A. & Morgan, P.: The linear relation between temperatures based on the silica content of ground water and regional heat flow: A new heat flow map of the United States, Pageoph. 117, 227–241, 1978.

    Article  Google Scholar 

  65. Taylor, H. P. jr.: The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol. 69, 843–883, 1974.

    Article  Google Scholar 

  66. Teichmüller, M.: Bestimmung des Inkohlungsgrades von kohligen Einschlüssen in Sedimenten des Oberrheingrabens — ein Hilfsmittel bei der Klärung geothermischer Fragen, in: J. H. Ulies & St. Müller (Hrsg.), Graben Problems, 124–142, (Schweizerbart) Stuttgart 1970.

    Google Scholar 

  67. Teichmüller, M. & Teichmüller, R.: Zur geothemischen Geschichte des Oberrhein-Grabens. Zusammenfassung und Auswertung eines Symposiums, Fortschr. Geol. Rhld. u. Westf. 27, 109–120, 1979.

    Google Scholar 

  68. Teichmüller, M. & Teichmüller, R.: The significance of coalification studies to geology — a review, Bull. Centres Explor.-Prod. Elf-Aquitaine 5, 491–534, 1981.

    Google Scholar 

  69. Tissot, B.: Premières données sur les mécanismes et la cinétique de la formation du pétrole dans les sédiments; simulation d’un schéma réactionnel sur ordinateur, Rev. Inst. Franç. Petrole 24, 470–501, 1969.

    Google Scholar 

  70. Truesdell, A. H.: Summary of section III, Geochemical techniques in exploration, Proc. 2nd U.N. Symp. on the Development and Use of Geothermal Resources, Vol. I, 53–79, Washington 1976.

    Google Scholar 

  71. Usdowski, H.-E.: Fraktionierung der Spurenelemente bei der Kristallisation, (Springer) Berlin-Heidelberg-New York 1975.

    Google Scholar 

  72. Volarovich, M. P. & Parkhomenko, E. I.: Electrical properties of rocks at high temperatures and pressures, in: A. Ádám (Hrsg.), Geoelectrical and geothermal studies, 321–369, Budapest 1976.

    Google Scholar 

  73. Wohlenberg, J.: Geophysikalische Untersuchungen in der Forschungsbohrung Urach, Progr. Energieforsch, u. Energietechnol. 1977–1980, Statusreport 1978 — Geotechnik und Lagerstätten, Bd. 1, 87–100, (Projektleitung Energieforsch., KFA Jülich), Jülich 1978.

    Google Scholar 

  74. Wohlenberg, J. & Hänel, R.: Kompilation von Temperatur-Daten für den Temperatur-Atlas der Bundesrepublik Deutschland, Programm Energieforsch, u. Energietechnol. 1977–1980, Statusreport 1978, Geotechnik u. Lagerstätten, Bd. 1, 1–12, (Projektleitung Energieforschung, KFA Jülich), Jülich 1978.

    Google Scholar 

References to: 6. Geothermal Heat as an Energy Source

  1. Allen, G. W. & McCluer, H. K.: Abatement of hydrogen sulphide emissions from the Geysers geothermal power plant, Proc. 2nd U.N. Int. Symp., Development and Use of Geothermal Resources, San Francisco 1975, Vol. 2, 1313–1316, Washington 1976.

    Google Scholar 

  2. Armstead, H. C. H.: Geothermal Energy, (Spon) London 1978.

    Google Scholar 

  3. Axtmann, R. C.: Chemical aspects of the environmental impact of geothermal power, Proc. 2nd U.N. Int. Symp., Development and Use of Geothermal Resources, San Francisco 1975, Vol. 2, 1323ff., Washington 1976.

    Google Scholar 

  4. Balling, N. & Saxov, S.: Low enthalpy geothermal energy resources in Denmark, Pageoph. 117, 205–212, 1978.

    Article  Google Scholar 

  5. Barker, C. E. & Elders, W. A.: Vitrinite reflectance geothermometry and apparent heating duration in the Cerro Prieto geothermal field, Geothermics 10, 207–223, 1981.

    Article  Google Scholar 

  6. Boldizsár, T.: Non-electric use of geothermal energy in Hungary, Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. Tom. 14, 289–297, 1979.

    Google Scholar 

  7. Brauchle, A. & Groh, W: Zur Geschichte der Physiotherapie, (Haug), 4. Aufl., Heidelberg 1971.

    Google Scholar 

  8. Buntebarth, G.: The degree of metamorphism of organic matter in sedimentary rocks as a paleogeothermometer, applied to the Upper Rhine Graben, in: L. Rybach & L. Stegena (Hrsg.), Geothermics and Geothermal Energy, 83–91, (Birkhäuser) Basel 1978.

    Google Scholar 

  9. Buntebarth, G. & Schopper, J. R.: Heat flow caused by water migration along faults in dependence on petrophysical parameters, Proc. Int. Congr. Thermal Waters, Geotherm. Energy and Vulcan. Mediterr. Area, Oct. 5–10, 1976; Vol. II, 41–49, Athen 1976.

    Google Scholar 

  10. Buntebarth, G., Grebe, H., Teichmüller, M. & Teichmüller, R.: Inkohlungsuntersuchungen in der Forschungsbohrung Urach 3 und ihre geothermische Interpretation, Fortschr. Geol. Rhld. u. Westf. 27, 183–199, 1979.

    Google Scholar 

  11. Buntebarth, G. & Teichmüller, R.: Zur Ermittlung der Paläotemperaturen im Dach des Bramscher Intrusivs aufgrund von Inkohlungsdaten, Fortschr. Geol. Rhld. u. Westf. 27, 171–182, 1979.

    Google Scholar 

  12. Creutzburg, H.: Untersuchungen über den Wärmestrom der Erde in Westdeutschland, Kali u. Steinsalz 4, 73–108, 1964.

    Google Scholar 

  13. Crittenden, M. D., Jr.: Environmental aspects of geothermal development, in: Rybach, L. & Muffler, L. J. P. (eds.), Geothermal systems: principles and case histories, 199–217, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  14. Corwin, R. F. & Hoover, D. B.: The self-potential method in geothermal exploration, Geophys. 44, 226–245, 1979.

    Article  Google Scholar 

  15. Coulbois, P. & Hérault, J.-P.: Conditions for the competitive use of geothermal energy in home heating, Proc. 2nd U.N. Int. Symp., Development and Use of Geothermal Resources, San Francisco 1975, Vol. 3, 2104ff., Washington 1976.

    Google Scholar 

  16. Eriksson, K. G., Ahlbom, K., Landström, O., Larson, S. Å., Lind, G. & Malmquist, D.: Investigation for geothermal energy in Sweden, Pageoph. 117, 196–204, 1978.

    Article  Google Scholar 

  17. Ernst, P. L.: Frac-Studien in der erweiterten Forschungsbohrung Urach, Programm Energieforsch, u. Energietechnol. 1977–1980, Statusreport 1978 — Geotechnik u. Lagerstätten, Bd. 1, 101–109, (Projektleitung Energieforschung, KFA Jülich), Jülich 1978.

    Google Scholar 

  18. Fridleifsson, LB.: Applied volcanology in geothermal exploration in Iceland, Pageoph. 117, 242–252, 1978.

    Article  Google Scholar 

  19. Gringarten, A. C.: Reservoir lifetime and heat recovery factor in geothermal aquifers used for urban heating, Pageoph. 117, 297–308, 1978.

    Article  Google Scholar 

  20. Gringarten, A. C. & Witherspoon, P. A.: Extraction of heat from multiple-fractured dry hot rock, Geothermics 2, 119–122, 1973.

    Article  Google Scholar 

  21. Gudmundsson, J. S.: Low-temperature geothermal use in Iceland, Geothermics 11, 59–68, 1982.

    Article  Google Scholar 

  22. Hot Spring Institute of Kanagawa-Prefecture, Map of Bouguer-anomaly of the Kanagawa-Prefecture. 1:100,000, Hakone 1975.

    Google Scholar 

  23. Iriyama, J. & Oki, Y.: Thermal structure and energy of the Hakone volcano, Japan, Pageoph. 117, 331–337, 1978.

    Article  Google Scholar 

  24. Ishii, Y.: Passive and active seismic prospecting in geothermal area, Butsuri-Tankô (Geophys. Explor.) 29, 14–31, 1976.

    Google Scholar 

  25. Kappelmeyer, O.: Implications of heat flow studies for geothermal energy prospects, in: V. Čermák u. L. Rybach (Hrsg.), Terrestrial heat flow in Europe, 126–135, (Springer) Berlin-Heidelberg-New York 1979.

    Google Scholar 

  26. Kappelmeyer, O. & Hänel, R.: Geothermics with special reference to application, (Borntraeger) Berlin-Stuttgart 1974.

    Google Scholar 

  27. Kertz, W.: Kann Erdwärme unseren Energiebedarf decken? Umschau 74, 661–666, 1974.

    Google Scholar 

  28. Koga, A.: Geochemistry of geothermal system prospecting, Butsuri-Tankô (Geophys. Explor.) 29, 72–82, 1976.

    Google Scholar 

  29. Kruger, P., Stoker, A. & Umana, A.: Radon in geothermal reservoir engineering, Geothermics 5, 13–19, 1977.

    Article  Google Scholar 

  30. Lamethe, D. & Laurent, G.: Investigation of the optimal use of geothermal waters for the heating of several types of dwelling in various European climates, Seminar on Geothermal Energy, Vol. 2, 559–570, (Kommission der Europ. Gemeinschaften, EUR 5920), Brüssel 1977.

    Google Scholar 

  31. Laughlin, A. W.: The geothermal system of the Jemez Mountains, New Mexico (USA) and its exploration, in: Rybach, L. & Muffler, L. J. P. (eds.), Geothermal systems: principles and case histories, 295–320, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  32. Lejeune, J. M.: Opération Creil: Leçons à tirer et premiers bilans, 2éme Coll. Franco-Allemand sur les Recherches geothermiques dans le Fosse Rhénan Sup., Strasbourg 1979, 43–44, (B.R.G.M.), Strasbourg 1980.

    Google Scholar 

  33. Majer, E. L. & McEvilly, T. V.: Seismological investigations at the Geysers geothermal field, Geophys. 44, 246–269, 1979.

    Article  Google Scholar 

  34. Meidav, T., Sanyal, S. & Facca, G.: An update of world geothermal energy development, Geotherm. Energy Mag. 5, 30–34, 1977.

    Google Scholar 

  35. Militzer, H., Schön, J., Stötzner, U. & Stoll, R.: Angewandte Geophysik im Ingenieur- und Bergbau, (VEB Deutscher Verlag f. Grundstoffindustrie) Leipzig 1978.

    Google Scholar 

  36. Muffler, L. J. P.: Geothermal resource assessment, in: Rybach, L. & Muffler, L. J. P. (eds.), Geothermal systems: principles and case histories, 181–198, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  37. Nakamura, H. & Sumi, K.: Exploration and development at Takinone, Japan, in: Rybach, L. & Muffler, L. J. P. (eds.), Geothermal systems: principles and case histories, 247–272, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  38. Nohl, G.: 1892–1972 Deutscher Bäderverband (DBV), (Boldt) Bonn 1972.

    Google Scholar 

  39. Nourbehecht, B.: Irreversible thermodynamic effects in inhomogeneous media and their application in certain geoelectric problems, Ph.D. thesis, Mass. Inst. Technol., Cambridge/Mass. 1963.

    Google Scholar 

  40. Oelsner, Chr.: Anwendung der Infrarotoberflächengeometrie zur Erkundung von Hohlräumen, Freib. Forsch.-Heft C 341, 155–178, Leipzig (VEB Deut. Verl. f. Grundstoff-industrie) 1979.

    Google Scholar 

  41. Oki, Y. & Hirano, T.: Hydrothermal system and seismic activity of Hakone volcano, Proc. US-Lapan cooperative seminar “The Utilization of Volcanic Energy”, 153–166, Hilo/ Hawaii 1974.

    Google Scholar 

  42. Onodera, S.: An estimation of potentials for the Hatchobaru geothermal area, northern Kyushu, Japan, Proc. US-Japan cooperative seminar “The Utilization of Volcanic Energy”, 75–105, Hilo/Hawaii 1974.

    Google Scholar 

  43. Ottlik, P., Gálfi, J., Horvath, F., Korim, K. & Stegena, L.: The low enthalpy geothermal resource of the Pannomian basin, Hungary, in: Rybach, L. & Muffler, L. J. P. (eds.), Geothermal systems: principles and case histories, 221–245, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  44. Reed, M. J. & Campbell, G.: Environmental impact of development in the Geysers geothermal filed, USA, Proc. 2nd U.N. Int. Symp., Development and Use of Geothermal Resources, San Francisco 1975, Vol. 2, 1399 ff., Washington 1976.

    Google Scholar 

  45. Rybach, L. & Muffler, L. J. P.: Geothermal systems: principles and case histories, Chichester-New York-Brisbane-Toronto (John Wiley & Sons) 1981.

    Google Scholar 

  46. Sabins, F. F. jr.: Remote sensing — principles and interpretation, (Freeman) San Francisco 1978.

    Google Scholar 

  47. Schaumberg, G.: Geothemisches Pilot-Projekt Bühl, 2ème Coll. Franco-Allemand sur les Recherches Geothermiques dans de Fosse Rhenan Sup., Strasbourg 1979, 39–40, (B.R.G.M.) Straßburg 1980.

    Google Scholar 

  48. Sekioka, M. & Yuhara, K.: Heat flux estimation in geothermal areas based on the heat balance of the ground surface, J. Geophys. Res. 79, 2053–2058, 1974.

    Article  Google Scholar 

  49. Smith, M. C.: Heat extraction from hot, dry, crustal rocks, Pageoph. 117, 290–296, 1978.

    Article  Google Scholar 

  50. Stilwell, W. B., Hall, W. K. & Tawhai, J.: Ground movement in New Zealand geothermal fields, Proc. 2nd U.N. Int. Symp., Development and Use of Geothermal Resources, San Francisco 1975, Vol. 2, 1427 ff., Washington 1976.

    Google Scholar 

  51. Suyuma, J., Sumi, K., Baba, K., Takashima, I. & Yuhara, K.: Assessment of geothermal resources of Japan, Proc. United States-Japan Geol. Surveys panel discussion on the assessment of geothermal resources, Tokyo 1975, 63–119, (Geolog. Survey Japan), Tokyo 1976.

    Google Scholar 

  52. Teichmüller, M.: Die Diagenese der kohligen Substanzen in den Gesteinen des Tertiärs und Mesozoikums des mittleren Oberrhein-Grabens, Fortschr. Geol. Rhld. u. Westf. 27, 19–49, 1979.

    Google Scholar 

  53. Ward, S. H., Parry, W. T., Nash, W P., Sill, W. R., Cook, K. L., Smith, R. B., Chapman, D. S., Brown, F. H., Whelan, J. A. & Bowman, J. R.: A summary of the geology, geochemistry and geophysics of the Roosevelt Hot Springs thermal area, Utah, Geophys. 43, 1515–1542, 1978.

    Google Scholar 

  54. Werner, D. & Parini, M.: The geothermal anomaly of Landau/Pfalz: An attempt of interpretation, J. Geophys. 48, 28–33, 1980.

    Google Scholar 

  55. White, D. E. & Guffanti, M.: Geothermal systems and their energy resources, Rev. Geoph. Space Phys. 17, 887–902, 1979.

    Article  Google Scholar 

  56. Yuhara, K. & Ushijima, K.: Ground temperature surveys and thermal discharge measurements at Ibusuki and its surrounding geothermal areas, Bull. Geol. Surv. Japan 28, 33–56, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

Buntebarth, G. (1984). References. In: Geothermics. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69323-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69323-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12751-2

  • Online ISBN: 978-3-642-69323-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics