Skip to main content

Interfacial Instability in Fluid Layers Under Thermal Constraints

  • Conference paper
Self-Organization Autowaves and Structures Far from Equilibrium

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 28))

  • 163 Accesses

Abstract

Although reports on interfacial convection were published before the beginning of our century and their relevance had been discussed by several authors, a systematic study of the phenomenology did not really occur until the experimental work conducted by Henri BENARD /l/. This author posed himself the task of providing a quantitative description of the (steady) flows arising in a horizontal thin liquid layer heated from below and open to the ambient air. There is some evidence that Benard perceived the relevant role of surface tension in his problem but, however, he did not really address himself the question of interest to us here: how and how much the liquid-air interface affected or was affected by the observed convective flows. It took some fifty years until the right experimental (BLOCK /2/, KOSCHMIEDER /3/) and theoretical questions (PEARSON /4/) were asked and, to a first approximation, unambiguously answered (BIRIKH /5/, NIELD /6/, STERNLING and SCRIVEN /7/).Yet, today we do not dispose of a complete theory of the interfacial phenomena involved in Benard convection. However,interfacial convection is so relevant to chemical engineering, materials sciences, crystal growth (LANGER /8/, OSTRACH /9/, SCHWABE and SCHARMANN/10/) that many aspects of the problems have already been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Benard. (a) Rév. Gén. Sci. pures appi. 11, 1261–1271(1900). (b) Ann. Chim Phys. 23, 62–144 (1901)

    Google Scholar 

  2. M. Block, Nature 178, 650–651 (1956)

    Article  ADS  Google Scholar 

  3. E.L. Koschmieder, J. Fluid Mech. 30, 9–15 (1967)

    Article  ADS  Google Scholar 

  4. J. R. A. Pearson, J. Fluid Mech. 4, 489–500 (1958)

    Article  ADS  MATH  Google Scholar 

  5. R.V. Birikh, J. Appi. Mech. Tech. Phys. 3, 43 (1966)

    Google Scholar 

  6. D.A. Nield, J. Fluid Mech. 19, 341–352 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C.V. Sternling, L.E. Scriven, AICHE J. 5, 514–523 (1959)

    Article  Google Scholar 

  8. J.S. Langer, Rev. Mod. Phys. 52, 1–28 (1980)

    Article  ADS  Google Scholar 

  9. S. Ostrach, In: Physico Chemical Hydrodynamics, Advance Pub., London, 1977

    Google Scholar 

  10. D. Schwabe, A. Scharmann, J. Crystal Growth 52, 435–499 (1981)

    Article  ADS  Google Scholar 

  11. C. Dauzere, J. Physique 7, 930–934 (1908)

    Google Scholar 

  12. V. Volkovisky, Publications Sci. Tech. Ministere de l’Air 151, Paris (1939)

    Google Scholar 

  13. Lord Rayleigh, Phil. Mag. 32, 529–546 (1916)

    Google Scholar 

  14. A. R. Low, D. Brunt, Nature 115, 299–301 (1925)

    Article  ADS  Google Scholar 

  15. M.G. Velarde, Ch. Normand, Sci. American 243, 78–93 (1980)

    Article  Google Scholar 

  16. R. Perez-Cordon, M.G. Velarde, J. Physique 36, 591–601 (1975)

    Article  ADS  Google Scholar 

  17. M..G. Velarde, R. Perez-Cordon, J. Physique 37, 171–182 (1976)

    Google Scholar 

  18. L.E. Scriven, C.V. Sternling, Nature 187, 186 (I960)

    Google Scholar 

  19. L.E. Scriven, C.V. Sternling, J. Fluid Mech. 19, 321–340 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Orell, J. W. Westwater, Chem. Eng. Sci. 16, 127 (1961)

    Article  Google Scholar 

  21. A. Orell, J. W. Westwater, AICHE J. 8, 350–356 (1962)

    Google Scholar 

  22. C. J. F. Wanngard, Ph.D. Diss., Royal Inst. Techn., Stockholm, 1980

    Google Scholar 

  23. J. Pantaloni, B. Bailleux, J. Salan, M.G. Velarde, J. Non-Equilibrium. Therm 4, 201–218 (1979)

    Google Scholar 

  24. J. Pantaloni, P. Cerisier, R. Bailleux, C. Gerbaud, J. Physique Lett. 42, L 147–L 150 (1981)

    Google Scholar 

  25. A.V. Hershey, Phys. Rev. 56, 204 (1939)

    Article  ADS  MATH  Google Scholar 

  26. K. C. D. Hickmann, Ind. Eng. Chem. 44, 1892–1902 (1952)

    Google Scholar 

  27. H. Jeffreys, Quart. J. Mech. Appl. Math. 4, 283–283 (1951)

    MATH  Google Scholar 

  28. K. A. Smith, J. Fluid Mech. 24, 401–414 (1966)

    Article  ADS  Google Scholar 

  29. M. Bentwich, Int. J. Heat Mass Transfer 9, 663–670 (1966)

    Article  Google Scholar 

  30. J.C. Berg, A. Acrivos, Chem. Eng. Sci. 20, 737–745 (1965)

    Article  Google Scholar 

  31. J.C. Berg, A. Acrivos, M. Boudart, Adv. Chem. Eng. 6, 61–123 (1966)

    Article  Google Scholar 

  32. A. Bose, H.J. Palmer, J. Fluid Mech. 126, 491–506 (1983)

    Article  ADS  MATH  Google Scholar 

  33. S.H. Davis, L. A. Segel, Phys. Fluids 11, 470–476 (1968)

    Article  ADS  MATH  Google Scholar 

  34. V. Ludviksson, E.N. Lightfoot, AICHE J. 14, 620–626 (1968)

    Article  Google Scholar 

  35. J.W. Scanlon, L. A. Segel, J. Fluid Mech. 30, 149–162 (1967)

    Article  ADS  MATH  Google Scholar 

  36. S.H. Davis, G. M. Homsy, J. Fluid Mech. 98, 527–553 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J.L. Castillo, M.G. Velarde, J. Fluid Mech. 125, 463–74 (1982)

    Article  ADS  MATH  Google Scholar 

  38. J.L. Castillo, M.G. Velarde, J. Colloid Interface Sci., submitted forpublication.

    Google Scholar 

  39. E. Ferm, D. Wollkind, J. Non-Equilib. Thermodyn. 7, 169–90 (1982).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Velarde, M.G. (1984). Interfacial Instability in Fluid Layers Under Thermal Constraints. In: Krinsky, V.I. (eds) Self-Organization Autowaves and Structures Far from Equilibrium. Springer Series in Synergetics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70210-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70210-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70212-9

  • Online ISBN: 978-3-642-70210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics