Skip to main content

Does the Coordination Environment Determine the Reactivity of Metals in Enzymes?

  • Conference paper
The Importance of Chemical “Speciation” in Environmental Processes

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 33))

  • 421 Accesses

Abstract

The control of the catalytic properties of metal ions in enzymes is discussed through three illustrations: the zinc enzymes carbonic anhydrase, carboxypeptidase, and alcohol dehydrogenase. They represent examples of the variation in reactivity of zinc ions placed in different biological environments leading to well-defined molecular species with different catalytic functions. Two levels of speciation are discussed:

  1. 1)

    basic chemical characteristics of a species by choice of the number, the chemical nature and geometric arrangement of protein side chains binding the metal; and

  2. 2)

    modulation of the metal species reactivity by structural changes induced by substrate and/or coenzyme binding which, inter alia, may alter the geometry, accessibility, and polarity of the functional metal-binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bertini I, Luchinat C (1983) An insight on the active site of zinc enzymes through metal substitution. In: Sigel H (ed) Metal ions in biological systems, vol 15, ch. 2. Marcel Dekker, New York

    Google Scholar 

  • Bertini I, Luchinat C, Scozzafava A (1982) Carbonic anhydrase. An insight into the zinc binding site and into the active cavity through metal substitution. Struct Bonding 48: 45–92

    Article  Google Scholar 

  • Brändén C-I, Jornvall H, Eklund H, Furugren B (1975) Alcohol dehydrogenases. In Boyer PD (ed) The enzymes. Academic Press, New York, pp 103–190

    Google Scholar 

  • Christianson DW, Lipscomb WN (1986) Mechanistic inferences from the binding of ligands to the active site of carboxypeptidase A. In: Bertini I, Luchinat C, Maret W, Zeppezauer M (eds) Zinc enzymes, ch. 7. Birkhäuser, Basel, in preparation

    Google Scholar 

  • Dahl KH, Dunn MF (1984) Reaction of 4–trans-(N,N-dimethylamino) cinnamaldehyde with the liver alcohol dehydrogenase - oxidized nicotinamide adenine dinucleotide complex. Biochemistry 23: 4094–4100

    Article  PubMed  CAS  Google Scholar 

  • Dietrich H, Maret W, Kozlowski H, Zeppezauer M (1981) Active-site-specifically reconstituted nickel(II) horse liver alcohol dehydrogenase: optical spectra of binary and ternary complexes with coenzymes, coenzyme analogues, substrates, and inhibitors. J Inorg Biochem 14: 197–311

    Article  Google Scholar 

  • Drum DE, Li T-K, Vallee BL (1969) Zinc isotope exchange in horse liver alcohol dehydrogenase. Biochemistry 8: 3792–3797

    Article  PubMed  CAS  Google Scholar 

  • Eklund H, Brändén C-I (1983) The role of zinc in alcohol dehydrogenase. In: Spiro TG (ed) Zinc enzymes. J. Wiley and Sons, New York, pp 123–152

    Google Scholar 

  • Gerber M, Zeppezauer M, Dunn MF (1983) Evidence for inner-sphere alkoxide ion intermediates in the catalytic mechanism of Co(II)-substituted liver alcohol dehydrogenase. Inorg Chim Acta 79: 161–164

    Article  Google Scholar 

  • Hughes MN (1981) The inorganic chemistry of biological processes. J. Wiley and Sons, New York, p 108

    Google Scholar 

  • Kuo LC, Fukuyama JM, Makinen MW (1983) Catalytic conformation of carboxypeptidase A. The structure of a true reaction intermediate stabilized at subzero temperatures. J Mol Biol 163: 63–105

    Google Scholar 

  • Lindskog S, Henderson LE, Kannan KK, Liljas A, Nyman PO, Strandberg B (1971) Carbonic anhydrase. In: Boyer PD (ed) The enzymes. Academic Press, New York, pp 587–665

    Google Scholar 

  • Lindskog S, Ibrahim SA, Jonsson B-H, Simonsson I (1983) Carbonic anhydrase: structure, kinetics, and mechanism. In: Bertini I, Drago RS, Luchinat C (eds) The coordination chemistry of metalloenzymes. D. Reidel Publishing Company, Dordrecht/Holland, pp 49–64

    Google Scholar 

  • Lipscomb WN (1983) Structure and catalysis of enzymes. Ann Rev Biochem 52: 17–34

    Article  PubMed  CAS  Google Scholar 

  • Maret W, Andersson I, Dietrich H, Schneider-Bernlöhr H, Einarsson R, Zeppezauer M (1979) Site-specific substituted cobalt(II) horse liver alcohol dehydrogenases. Eur J Biochem 98: 501–512

    Article  PubMed  CAS  Google Scholar 

  • Maret W, Dietrich H, Ruf H-H, Zeppezauer M (1980) Active site-specific reconstituted copper(II) horse liver alcohol dehydrogenase: a biological model for type 1 Cu2+ and its changes upon ligand binding and conformational transitions. J Inorg Biochem 12: 241–252

    Article  PubMed  CAS  Google Scholar 

  • Rees DC, Howard JB, Chakrabarti P, Yeates T, Hsu BT, Hardmann KD, Lipscomb WN (1986) Crystal structures of metallosubstituted carboxypeptidase A. In: Bertini I, Luchinat C, Maret W, Zeppezauer M (eds) Zinc enzymes, ch. 9. Birkhauser, Basel, in preparation

    Google Scholar 

  • Sander ME, Witzel H (1985) Carboxypeptidase A, evidence for an anhydride intermediate. Rev Port Quim 27: 247

    Google Scholar 

  • Schneider G, Eklund H, Cedergren-Zeppezauer E, Zeppezauer M (1983) Structure of the complex of active site metal-depleted horse liver alcohol dehydrogenase and NADH. EMBO J 2: 685–689

    PubMed  CAS  Google Scholar 

  • Vallee BL, Galdes A, Auld DS, Riordan JF (1983) Carboxypeptidase A. In: Spiro TG (ed) Zinc enzymes. J. Wiley and Sons, New York, pp 25–75

    Google Scholar 

  • Zeppezauer M, Andersson I, Dietrich H, Gerber M, Maret W, Schneider G, Schneider-Bernlohr H (1984) Coordination chemistry and function of the catalytic metal ion in liver alcohol dehydrogenase. J Mol Catal 23: 377–387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Bernhard F. E. Brinckman P. J. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Zeppezauer, M., Maret, W. (1986). Does the Coordination Environment Determine the Reactivity of Metals in Enzymes?. In: Bernhard, M., Brinckman, F.E., Sadler, P.J. (eds) The Importance of Chemical “Speciation” in Environmental Processes. Dahlem Workshop Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70441-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70441-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70443-7

  • Online ISBN: 978-3-642-70441-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics