Skip to main content

Chemical Species in Freshwater and Terrestrial Systems

Group Report

  • Conference paper
The Importance of Chemical “Speciation” in Environmental Processes

Abstract

Group discussions were limited to metals and certain metalloids, except that N, P, and S were considered in the broader topic of biogeochemical cycles. In many instances, the statements concerning metals are also applicable to many, or even most, other elements. However, our discussions were focused on the metals and metalloids because of their major importance as environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts JJ, Giesy JP (1983) Conditional stability constants of trace metal and naturally occurring humic materials: Chemical application in equilibrium models and verification with field data. In: Christman RF, Gessing ET (eds) Aquatic and terrestrial humic materials. Ann Arbor Press, Ann Arbor, MI, pp 333–348

    Google Scholar 

  • Altmann RS, Leckie JO (1984) Metal binding in heterogeneous multicomponent systems: mathematical and experimental modeling. Proceedings, Fourth International Ocean Disposal Symposium, in press

    Google Scholar 

  • Baccini P (1984) Regulation of trace metal concentrations in fresh water systems. In: Sigel H (ed) Metal ions in biological systems, vol 18, circulation of metals in the environment. Marcel Dekker, New York

    Google Scholar 

  • Baccini P, Suter N (1979) MELINEX and experimental heavy metal pollution study: chemical speciation and biological availability of copper in lake water. Schweiz ZHydrol 41: 291–314

    Article  CAS  Google Scholar 

  • Baldensperger J, Guarraia LJ, Humphreys WJ (1974) Scanning electron microscopy of Thiobacilli grown on colloidal sulfur. Arch Microbiol 99: 323–393

    Article  PubMed  CAS  Google Scholar 

  • Bennett JC, Tributsch H (1978) Bacterial leaching patterns on pyrite crystal surfaces. J Bacteriol 134: 310–317

    PubMed  CAS  Google Scholar 

  • Brümmer G, Tiller KG, Herms U, Clayton P (1983) Adsorption-desorption and/or precipitation-dissolution processes of zinc in soils. Geoderma 31: 337–354

    Article  Google Scholar 

  • Chau YK, Wong PTS, Bengert GA, Dunn JL (1984) Determination of dialkyllead, trialkyllead, tetraalkyllead and lead(II) compounds in sediment and biological samples. Anal Chem 56: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y (1984) The solar lake cyanobacterial mats: strategies of photosynthetic life under sulfide. In: Cohen Y, Casterholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. Alan R. Liss, Inc., New York, pp 133–148

    Google Scholar 

  • Cohen Y, Gack E (1984) Fe”“ dependent photosynthesis in cyanobacteria. Nature, in press

    Google Scholar 

  • Cowan CE, Jenne EA, Kinnison RR (1984) A methodology for determining the toxic chemical species of copper in toxicity experiments and natural waters, pp. 78 –91. In Trace Substances in Environmental Health-XVIII, ed. D. D. Hemphill. Univ. of Missouri, Columbia

    Google Scholar 

  • Dissanayake CB, Kritsotakis K, Tobschall HJ (1984) The abundance of Au, Pt, Pd, and the mode of heavy metal fixation in highly polluted sediments from the Rhine river near Mainz, West Germany. Intl J Envir Stud 22: 109–119

    Google Scholar 

  • Dissanayake CB, Tobschall HJ, Palme H, Rast U, Spettel B (1983) The abundance of some major and trace elements in highly polluted sediments from the Rhine River near Mainz, West Germany. Science Tot Envir 29: 243–260

    Google Scholar 

  • Frimmel FH, Innerz A, Niedermann H (1984) Complexation capacities of humic substances isolated from fresh water with respect to copper [II], mercury [II], and iron [II, III]. In: Kramer CJN, Buinger JC (eds) Complexation of trace metals in natural waters. Matenus Nijhoss-Dr. W. Junk, The Hague, pp 329–343

    Google Scholar 

  • Gamble DS, Schnitzer M, Kerndorff H, Langford CH (1983) Multiple metal ion exchange equilibria with humic acids. Geochim Cosmochim Acta 47: 1311–1323

    Article  CAS  Google Scholar 

  • Gamble DS, Underdown AW, Langford CH (1980) Copper [II] titration of fulvic acid ligand sites with theoretical, potentiometric and spectrophotometric analysis. Anal Chem 52: 1901–1908

    Article  CAS  Google Scholar 

  • Gerth J, Brümmer G (1983) Adsorption und Festlegung von Nickel, Zink und Cadmium durch Goethit (a-FeOOH). Fresenius Z Anal Chem 316: 616–620

    Google Scholar 

  • Herms U, Brümmer G (1984) Einflußgrößen der Schwermetalloslichkeit und –bindung im Boden. Z Pflanzenernahr Bodenkd 147: 400–424

    Article  CAS  Google Scholar 

  • Howarth RW (1979) Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49–51

    Article  PubMed  CAS  Google Scholar 

  • Jacobs L, Emerson S (1982) Trace metal solubility in an anoxic fjord. Earth Planet Sci Lett 60: 237–252

    Article  CAS  Google Scholar 

  • Jenne EA, Kennedy VC, Burchard JM, Ball JW (1980) Sediment collection and processing for selective extraction and for total trace element analyses. In: Baker RA (ed) Contaminants and sediments, vol 2. Ann Arbor Science, Ann Arbor, MI, pp 169–190

    Google Scholar 

  • Jenne EA, Wildung RE (eds) (1984) The biological availability of trace elements: chemical estimation, ecological and health implications. Science Tot Envir 28

    Google Scholar 

  • Kabata-Pendias A (1972) Chemical composition of soil solution. T Roczniki Gleboznowcze 23: 3–14 (in Polish)

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. Boca Raton FL, Chemical Rubber Company Press

    Google Scholar 

  • Kabata-Pendias A, Wiacek K (1984) Excessive uptake of heavy metals by plants from contaminated soils. T Roczniki Gleboznowcze, in press

    Google Scholar 

  • Kennedy VC, Zellweger GW, Jones BF (1974) Filter pore-size effects on the analyses of Al, Mn and Ti in water. Water Resources Res 10: 785–790

    Google Scholar 

  • King GM (1983) Sulfate reduction in Georgia salt marsh soils. An evaluation of pyrite formation by use of 35S and 55Fe tracers. Limnol Oceanog 28: 987–995

    Article  CAS  Google Scholar 

  • Kinniburgh DG, Miles DL (1983) Extraction and chemical analysis of interstitial water from soils and rocks. Envir Sci Technol 17: 362–368

    Article  CAS  Google Scholar 

  • Leckie JO, Nelson MB (1975) Role of natural heterogeneous sulfide systems in controlling the concentration and distribution of heavy metals. Paper presented at the 2nd International Symposium on Environmental Biogeochemistry, Ontario, Canada

    Google Scholar 

  • Lindsay WL (1979) Chemical Equilibria in Soils. Wiley, New York

    Google Scholar 

  • Maguire RJ, Chau YK, Bengert GA, Hales EJ (1982) Occurrence of organotin compounds in Ontario lakes and rivers. Envir Sci Technol 16:698–702

    Article  CAS  Google Scholar 

  • Manheim FT (1966) A hydraulic squeezer for obtaining interstitial water from consolidated and unconsolidated sediments. US Geol Surv Prof Paper 550–C:256–261

    Google Scholar 

  • Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mertz W, Rozinski EE (1971) Chromium metabolism: glucose tolerance factor. In: Mertz W, Cornatzer W. F. (eds) Newer trace elements in nutrition. Dekker, New York, pp 123–153

    Google Scholar 

  • Perdue EM, Lytle CR (1983) Distribution model for binding of protons and metal ions by humic substances. Envir Sci Technol 17: 654–660

    Article  CAS  Google Scholar 

  • Prosi F (1983) Storage of heavy metals in organics of limnic and terestric invertebrates and their effects on the cellular level. In: Management and Control of Heavy Metals in the Environment. Heidelberg, pp 459–462

    Google Scholar 

  • Rawamoorthy S, Kushner DJ (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microb Ecol 2: 162–176

    Article  Google Scholar 

  • Ridley WP, Dizikes LJ, Wood JM (1977) Biomethylation of toxic elements in the environment. Science 197: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Robertson DE, Toste AP, Abel KH, Cowan CE, Jenne EA, Thomas CW (1984) Speciation and transport of radionuclides in groundwater. In: Alexander DH, Birchard GF (eds) NRC nuclear waste geochemistry ’83. NUREG /CP-0052, pp 297–325

    Google Scholar 

  • Rubischung P, Tobschall HJ (1980) Identification and determination of some environmental organomercurials in recent fluviatile sediments by means of thinlayer chromatography. Chem Erde 39: 239–275

    CAS  Google Scholar 

  • Schnitzer M, Skinner SIM (1966) Organo-metallic interactions in soils: 5. Stability constants of Cu+2–, Fe+2– and Zn2+-fulvic acid complexes. Soil Sci 102: 361–365

    Article  CAS  Google Scholar 

  • Schuman MS, Collins BJ, Fitzgerald PJ, Olsen DL (1983) Distribution of stability constants and dissociation rate constants among binding sites on estuarine copper-organic complexes: Rotated disk electrode studies and an affinity spectrum analysis of iron-selective electrode and photometric data. In: Christman RF, Gessing ET (eds) Aquatic and terrestrial humic materials. Ann Arbor Science, Ann Arbor, MI, pp 349–370

    Google Scholar 

  • Sorensen J (1982) Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Envir Microbiol 43: 319–324

    CAS  Google Scholar 

  • Sposito G (1981) The thermodynamics of soil solution. Claredon Press, London

    Google Scholar 

  • Sposito G (1983) The chemical forms of trace metals in soils. In: Thornton I (ed) Applied environmental geochemistry. Academic Press, London

    Google Scholar 

  • Thorenstenson DC, Plummer LN (1977) Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase - example: the magnesian calcites. Am J Sci 277: 1203–1223

    Article  Google Scholar 

  • Tiller KG, Hodgson JF (1962) The specific sorption of cobalt and zinc by layer silicates. Clays Clay Min 9: 404–411

    Google Scholar 

  • Underdown AW, Langford CH, Gamble DS (1984) Light scattering studies of the relationship between cation binding and aggregation of a fulvic acid. Envir Sci Technol, in press

    Google Scholar 

Download references

Authors

Editor information

M. Bernhard F. E. Brinckman P. J. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Jenne, E.A. et al. (1986). Chemical Species in Freshwater and Terrestrial Systems. In: Bernhard, M., Brinckman, F.E., Sadler, P.J. (eds) The Importance of Chemical “Speciation” in Environmental Processes. Dahlem Workshop Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70441-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70441-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70443-7

  • Online ISBN: 978-3-642-70441-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics