Skip to main content

Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements

  • Conference paper
Plant Response to Stress

Part of the book series: NATO ASI Series ((ASIG,volume 15))

Abstract

Chlorophyll fluorescence serves as an intrinsic indicator of the photosynthetic reactions in the chloroplasts of green plants. The relationship between chlorophyll fluorescence and the mechanisms of photosynthesis have been the subject of a great number of investigations, since Kautsky discovered (Kautsky and Hirsch 1931) that fluorescence intensity in green leaves displays characteristic changes upon illumination (Kautsky effect - for reviews, see Papageorgiou 1975; Lavorel and Etienne 1977; Krause and Weis 1984). For almost half a century fluorescence has been mainly a tool for biophysically oriented researchers in studies of the primary processes of photosynthesis. Practical applications of the Kautsky effect in ecophysiological work had been limited by the availability of suitable instrumentation and by the complexity of the fluorescence information obtained in vivo. In recent years considerable efforts have been put into the development of field oriented fluorescence equipment and into the development of the methodology for analysing fluorescence data from intact leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber J (1983) Membrane conformational changes due to phosphorylation and the control of energy transfer in photosynthesis. Photobiochem Photobiophys 5: 181–190

    CAS  Google Scholar 

  • Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins: Regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Natl Acad Sci 77: 5253–5257

    Article  PubMed  CAS  Google Scholar 

  • Beyschlag W (1984) Photosynthese und Wasserhaushalt von Arbutus unedo L. im Jahreslauf am Freilandstandort in Portugal. Gaswechselmessungen unter natürlichen Bedingungen und experimentelle Faktorenanalyse. Dissertation, Würzburg

    Google Scholar 

  • Bilger W, Schreiber U (1987) Energy dependent quenching of dark-level chlorophyll fluorescence in intact leaves. In: Govindjee et al. (eds), Excitation Energy and Electron Transfer in Photosynthesis, Photosynthesis Research Supp. Vol. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht

    Google Scholar 

  • Bilger W, Schreiber U, Lange OL (1984) Determination of leaf heat resistance: Comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia 63: 256–262

    Article  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of Plant Physiology, NS vol 12A. Springer, Berlin-Heidelberg-New York, pp 57–107

    Google Scholar 

  • Björkman O, Powles SB (1984) Inhibition of photosynthetic reactions under water stress: Interaction with light level. Planta 161: 490–504

    Article  Google Scholar 

  • Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Biochim Biophys Acta 635: 542–551

    Article  PubMed  CAS  Google Scholar 

  • Critchley C, Smillie RM (1981) Leaf chlorophyll fluorescence as an indicator of photoinhibition in Cucumis sativus L. Aust J Plant Physiol 8: 133–141

    Article  CAS  Google Scholar 

  • Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon dioxide, oxygen and light regimes. Planta 166: 219–226

    Article  CAS  Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Studies on Microalgae and Photosynthetic Bacteria. University of Tokyo Press, Tokyo, pp 353–372

    Google Scholar 

  • Govindjee, Downton WJS, Fork DC, Armond PA (1981) Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Sci Lett 20: 191–194

    Article  CAS  Google Scholar 

  • Havaux M, Lannoye R (1983) Chlorophyll fluorescence induction: A sensitive indicator of water stress in maize plants. Irrig Sci 4: 147–151

    Google Scholar 

  • Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation XI. Die Chlorophyllfluoreszenz von Ulva lactuca und ihre Abhängigkeit von Narkotika, Sauerstoff und Kohlendioxyd. Biochem Z 315: 176–206

    CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Naturwissenschaften 19: 964

    Article  CAS  Google Scholar 

  • Kautsky H, Hirsch A (1934) Das Fluoreszenzverhalten grüner Pflanzen. Biochem Z 274: 422–434

    Google Scholar 

  • Krause GH, Briantais JM, Vernotte C (1982) Photoinduced quenching of Chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim Biophys Acta 679: 116–124

    Article  CAS  Google Scholar 

  • Krause GH, Köster S, Wong SC (1985) Photoinhibition of photosynthesis under anaerobic conditions studied with leaves and chloroplasts of Spinacia oleracea L. Planta 165: 430–438

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5: 139–157

    Article  CAS  Google Scholar 

  • Kyle DJ, Ohad I, Arntzen CJ (1984) Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 81: 4070–4074

    Article  PubMed  CAS  Google Scholar 

  • Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary Processes of Photosynthesis. Elsevier, Amsterdam, pp 203–268

    Google Scholar 

  • Monson RK, Williams GJ (1982) A correlation between photosynthetic temperature adaptation and seasonal phenology patterns in the shortgrass prairie. Oecologia 54: 58–62

    Article  Google Scholar 

  • Ögren E, Baker NR (1985) Evaluation of a technique for the measurement of chlorophyll fluorescence from leaves exposed to continuous white light. Plant, Cell & Environment 8: 539–547

    Article  Google Scholar 

  • Papageorgiou G (1975) Chlorophyll fluorescence: An intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of Photosynthesis. Academic Press, New York, pp 319–371

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35: 15–44

    Article  CAS  Google Scholar 

  • Powles SB, Björkman O (1982) Photoinhibition of photosynthesis: Effect on chlorophyll fluorescence at 77K in intact leaves and in chloroplast membranes of Nerium oleander. Planta 156: 97–107

    Article  CAS  Google Scholar 

  • Quick WP, Horton P (1984) Studies on the induction of chlorophyll fluorescence quenching by redox state and transthylakoid pH gradient. Proc R Soc Lond B 217: 405–416

    Google Scholar 

  • Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria. Academic Press, New York, in press

    Google Scholar 

  • Samuelsson G, Lönneborg A, Rosenquist E, Gustafsson P, Öquist G (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol 79: 992–995

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4: 361–373

    CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9: 261–272

    Article  CAS  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136: 233–238

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 9

    Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot Rev 51: 53–105

    Article  Google Scholar 

  • Smillie RM, Nott R (1979) Heat injury in leaves of alpine, temperate and tropical plants. Aust J Plant Physiol 6: 135–141

    Article  CAS  Google Scholar 

  • Tenhunen JD, Weber J, Yocum C, Gates DM (1976) Development of a photosynthesis model with an emphasis on ecological applications. II. Analysis of a data set describing the PM surface. Oecologia (Berl) 26: 101–119

    Article  Google Scholar 

  • Velthuys BR, Amesz J (1974) Charge accumulation at the reducing side of system II of photosynthesis. Biochim Biophys Acta 333: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Weis E (1984) Short term acclimation of spinach to high temperatures. Effect on chlorophyll fluorescence at 293 and 77K in intact leaves. Plant Physiol 74: 402–407

    Article  PubMed  CAS  Google Scholar 

  • Weis E (1985) Light- and temperature-induced changes in the distribution of excitation energy between photosystem I and photosystem II in spinach leaves. Biochim Biophys Acta 807: 118–126

    Article  CAS  Google Scholar 

  • Wiltens J, Schreiber U, Vidaver W (1978) Chlorophyll fluorescence induction: An indicator of photosynthetic activity in marine algae undergoing desiccation. Can J Bot 56: 2787–2794

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schreiber, U., Bilger, W. (1987). Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (eds) Plant Response to Stress. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70868-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70868-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70870-1

  • Online ISBN: 978-3-642-70868-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics