Skip to main content

Approaches for studying the function of deep root systems

  • Conference paper
Plant Response to Stress

Part of the book series: NATO ASI Series ((ASIG,volume 15))

Abstract

The distribution of roots in a soil column is such that root biomass and length generally decrease abruptly with depth (Böhm 1979). Most studies of roots have considered only those roots in the surface 0.5 to 1.0 m of soil. Although deeper roots have been noted and their significance discussed, few studies have examined the nature of these deep roots in any detail. The most frequently hypothesized function of these deep roots, relates to their ability to extract water which is available beyond the reach of other plants (Cannon 1911; Weaver 1926). However, little has been done to estimate the importance of deep roots in determining plant production or in maintaining the nutrient balance of the plant. The functional significance of N2-fixation, root infection by mycorrhizal fungi and pathogens, and rhizosphere-related microflora and fauna of deep root systems have essentially been ignored..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessi, RS, Prunty L (1986) Soil-water determination using fiber optics. Soil Sci Soc Am J 50: 860–863

    Article  Google Scholar 

  • Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrology 60: 157–173

    Article  Google Scholar 

  • Ambler JR, Young JL (1977) Technique for determining root length infected by vesicular-arbuscular mycorrhizae. Soil Sci Soc Am J 41: 551–556

    Article  Google Scholar 

  • Arkley RJ (1981) Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci Soc Am J 45: 423–427

    Article  Google Scholar 

  • Baath E, Lohm U, Lundgren B, Rosswall T, Soderstron B, Sohlenius B (1981) Impact of microbial feeding animals on total soil activity and nitrogen dynamics: A soil microcosm experiment. Oikos 37: 257–264

    Article  Google Scholar 

  • Barber SA (1984) Soil Nutrient Bioavailability. John Wiley and Sons, New York, 398 p

    Google Scholar 

  • Barber SA, Bouldin DR (1984) Roots, nutrient and water influx, and plant growth Agronomy Society of America Special Publication No. 4, 136 p

    Google Scholar 

  • Bergersen FJ (ed) (1980) Methods for Evaluating Biological Nitrogen Fixation. John Wiley and Sons, New York, 702 p

    Google Scholar 

  • Böhm (1979) Methods of Studying Root Systems. Springer-Verlag, Berlin-Heidelberg-New York, 188 p

    Book  Google Scholar 

  • Böhm W, Maduakor H, Taylor HM (1977) Comparison of five methods for characterizing soybean rooting density and development. Agron J 69: 415–419

    Article  Google Scholar 

  • Bottomley PA, Rogers HH, Foster TH (1986) NMR imaging shows water distribution and transport in plant root systems in situ. Proc Nat Acad Sci USA 83: 87–89

    Article  PubMed  CAS  Google Scholar 

  • Brockwell J (1982) Plant-infection counts of rhizobia in soils. In: Vincent JM (ed) Nitrogen Fixation in Legumes. Academic Press, Sydney, p 41–58

    Google Scholar 

  • Burggraaf AJP, Quispel A, Tak T, Valstar J (1981) Methods of isolation and cultivation of Frankia species from actinorhizas. Plant Soil 61: 157–168

    Article  Google Scholar 

  • Byrd DW, Barker KR, Ferris H, Nusbaum CJ, Griffin WE, Small RH, Stone CA (1976) Two semi-automatic elutriators for extracting nematodes and certain fungi from soil. J Nematology 8: 206–212

    CAS  Google Scholar 

  • Caldwell MM, Eissenstat DM, Richards JH, Allen MF (1985) Competition for phosphorus: Differential uptake from dual-isotope-labeled soil interspaces between shrub and grass. Science 229: 384–386

    Article  PubMed  CAS  Google Scholar 

  • Cannon WA (1911) The Root Habits of Desert Plants. Carnegie Inst of Washington Publ No 131, Washington, DC, 96 p

    Google Scholar 

  • Cassell DK, Klute, A. (1986) Water potential: tensiometry. In: Klute A (ed) Methods of Soil Analysis, Part 1 — Physical and Mineralogical Methods. Second Edition, Am Soc Agron, Madison, Wisconsin p. 563–596

    Google Scholar 

  • Chaney WR (1981) Sources of water. In: Kozlowski TT (ed) Water Deficits and Plant Growth Vol. VI. Academic Press, New York, pp 1–47

    Google Scholar 

  • Chiarello N, Hickman JC, Mooney HA (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217: 941–943

    Article  Google Scholar 

  • Curl EA, Truelove B (1986) The Rhizosphere. Adv Series in Agric Sci 15, Springer-Verlag, Berlin-Heidelberg-New York, 288 p

    Google Scholar 

  • Daniels BA, Skipper HD. (1982). Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed.). Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, Minn., pp 29–35

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16: 436–468

    Article  Google Scholar 

  • Dart PJ (1975) Legume root nodule initiation and development. In: Torrey JG and Clarkson DT (eds) The Development and Function of Plant Roots. Academic Press Inc., New York, pp 467–506

    Google Scholar 

  • Delwiche CC, Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol 4: 929–935

    Article  CAS  Google Scholar 

  • Delwiche CC, Zinke PJ, Johnson CM, Virginia RA (1979) Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot Gaz 140: 65–69

    Article  CAS  Google Scholar 

  • Di Castri F, Vitali-di Castri V (1981) Soil fauna of Mediterranean-climate regions. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type Shrublands, Ecosystems of the World 11. Elsevier Sci Pub Co, Amsterdam, pp 445–478

    Google Scholar 

  • Dodge CJ, Francis AJ. (1986) Anoxic collection and analysis of subsurface water samples. Research Highlights: Subsurface Transport Program, Brookhaven National Laboratory, U.S. Department of Energy, 18 p

    Google Scholar 

  • Fitter AH (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia (Berl) 69: 594–599

    Article  Google Scholar 

  • Fitter AH, Atkinson D, Read DJ, Usher MB (1985) Ecological Interactions in Soil, Plants, Microbes and Animals. Brit Ecol Soc Spec Pub 4, Blackwell Sci Pub, Oxford, 451 p

    Google Scholar 

  • Fox RL, Lipps RC (1964) A comparison of stable strontium and 32p as tracers for estimating alfalfa root activity. Plant Soil 20: 337–350

    Article  Google Scholar 

  • Freckman DW (ed) (1982) Nematodes in Soil Ecosystems. Univ of Texas Press, Austin, 206 p

    Google Scholar 

  • Gardner WH (1986) Water content. In: Klute A (ed) Methods of Soil Analysis, Part 1 — Physical and Mineralogical Methods. Second Edition, Am Soc Agron, Madison Wisconsin, pp 493–544

    Google Scholar 

  • Gilberto J, Estay H (1978) Seasonal water stress in some Chilean matorral shrubs. Bot Gaz 139: 236–240

    Article  Google Scholar 

  • Grand LF, Harvey AE (1982) Quantitative measurement of ectomycorrhizae on plant roots. In: Schenck NC (ed) Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, Minn, pp 157–164

    Google Scholar 

  • Greacen EL (1981) Soil Water Assessment by the Neutron Method. CSIRO, Australia.

    Google Scholar 

  • Hanks RJ, Ashcroft GL (1980) Applied Soil Physics. Soil Water and Temperature Applications. Springer-Verlag, Berlin-Heidelberg-New York, 159 p

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal Symbiosis. Academic Press, New York, 483 p

    Google Scholar 

  • Hardy RWF, Burns RC, Holsten RP (1973) Applications of the measurement of the acteylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5: 47–81

    Article  CAS  Google Scholar 

  • Hauck RD, Bystrom M (1970), N. A selected Bibliography for Agricultural Scientists. Iowa State Univ Press, Ames, 206 p

    Google Scholar 

  • Hauck RD, Weaver RW (1986) Field Measurement of Dinitrogen Fixation and Denitrification. Soil Sci Soc Am Spec Publ No. 18, Madison, Wisconsin, 115 p

    Google Scholar 

  • Hellmers H, Horton JS, Juhren G, O’Keefe J (1955) Root systems of some chaparral plants in southern California. Ecology 36: 667–678

    Article  Google Scholar 

  • Hepper C (1977) A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots. Soil Biol Biochem 9: 15–18

    Article  Google Scholar 

  • Hoffman A, Kummerow J (1978) Root studies in the Chilean matorral. Oecologia (Berl) 32: 57–69

    Article  Google Scholar 

  • Joslin JD, Henderson GS (1984) The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride. For Sci 30: 965–970

    Google Scholar 

  • Kelly OJ, Hardman J A, Jennings DS (1947) A soil-sampling machine for obtaining two-, three-, and four-inch diameter sores of undisturbed soil to a depth of six feet. Proc Soil Sci Soc Amer 12: 85–87

    Article  Google Scholar 

  • Kormanik PP, A-C McGraw (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, Minn, p. 37–45

    Google Scholar 

  • Kummerow J (1981) Structure of roots and root systems. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type Shrublands, Ecosystems of the World 11. Elsevier Sci Pub Co, Amsterdam, pp 269–288

    Google Scholar 

  • Kummerow J, Krause D, Jow W (1977) Root systems of chaparral shrubs. Oecologia (Berl) 29: 163–177

    Google Scholar 

  • Lewis DC, Burgy RH (1964) The relationship between oak tree roots and groundwater in fractured rock as determined by tritium tracing. J Geophysical Res 69: 2579–2588

    Article  Google Scholar 

  • Lipps RC, Fox RL, Koehler FE. (1957) Characterizing root activity of alfalfa by radioactive tracer techniques. Soil Science 84: 195–204

    Article  Google Scholar 

  • McGowan M, Armstrong MJ, Corrie JA (1983) A rapid fluorescent-dye technique for measuring root length. Exp Agric 19: 209–216

    Article  Google Scholar 

  • McNabb JF, Mallard GE (1984) Microbiological sampling in the assessment of groundwater pollution. In: Bitton G, Gerba CP (eds) Groundwater Pollution Microbiology. John Wiley & Sons, New York, pp 235–260

    Google Scholar 

  • Mitchell MJ, Naksa JP(eds) (1986) Microfloral and Faunal Interactions in Natural and Agro-ecosystems. Developments in Biogeochemistry, Martinus Nijhoff/Dr W Junk Pub, Dordrecht, 505 p

    Google Scholar 

  • Mosse B, Stribley DP, LeTacon F (1981) Ecology of mycorrhiza and mycorrhizal fungi. In: Alexander M (ed) Advances in Microbial Ecology Vol. 5. Plenum Press, New York, pp 137–210

    Google Scholar 

  • Newman EI (1966) A method for estimating the total length of root in a sample. J Appl Ecol 3: 139–145

    Article  Google Scholar 

  • Nilsen ET, Sharifi MR, Rundel PW, Jarrell WM, Virginia RA (1983) Diurnal and seasonal water relations of the desert phreatophyte Prosopis glandulosa ( Honey Mesquite) in the Sonoran Desert of California. Ecology 64: 1381–1393

    Article  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute Movement in the Soil-Root System. Univ California Press, Berkeley, 342 p

    Google Scholar 

  • Osborne JF, Pelishek RE (1961) Installing deep neutron tubes. Agric Engineering 42: 611–612

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55: 158–161

    Article  Google Scholar 

  • Rambal S (1984) Water balance and pattern of root water uptake by a Quercus coccifera evergreen scrub. Oecologia (Berl) 62: 18–25

    Article  Google Scholar 

  • Rawlins SL,Campbell GS. (1986) Water potential: thermocouple psychrometry. In: Klute A (ed) Methods of Soil Analysis, Part 1 — Physical and Mineralogical Methods. Second Edition,.Am Soc Agron, Madison, Wisconsin, pp 597–618

    Google Scholar 

  • Rennie RJ, Rennie DA (1983) Techniques for quantifying N2-fixation in association with nonlegumes under field conditions. Can J Microbiol 29: 1022–1035

    Article  Google Scholar 

  • Rundel PW, Nilsen ET, Sharifi MR, Virginia RA, Jarrell WM, Kohl DH, Shearer GB (1982) Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert. Plant Soil 67: 343–353

    Article  CAS  Google Scholar 

  • Russell RS (1977) Plant Root Systems: Their Function and Interaction with the Soil. McGraw Hill, London, 298 p

    Google Scholar 

  • Savage MJ, Cass A (1984) Measurement of water potential using in situ thermocouple hygrometers. Adv Agron 37: 73–126

    Article  Google Scholar 

  • Schenck NC (ed). (1982) Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, Minn, 244 p

    Google Scholar 

  • Scott JM, Porter FE (1986) An analysis of the accuracy of a plant infection technique for counting rhizobia. Soil Biol Biochem 18: 355–362

    Article  Google Scholar 

  • Shearer G, Kohl DH (1987) N2-fixation in field settings: Estimations based on natural 15N abundance. Aust J Plant Physiol (in press)

    Google Scholar 

  • Shearer GB, Kohl DH, Chien SH (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci Soc Am J 42: 899–902

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, Rundel PW, (1983) Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran Desert Ecosystems. Oecologia (Berl) 56: 365–373

    Article  Google Scholar 

  • Slavik B (1974) Methods of Studying Plant Water Relations. Ecological Studies Series Vol 9, Springer-Verlag, Berlin-Heidelberg-New York, 449 p

    Google Scholar 

  • Smucker AJM, McBurney, Srivastava AK (1982) Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agron J 74: 500–503

    Article  Google Scholar 

  • Svejcar TJ, Boutton TW (1985) The use of stable carbon isotopes analyses in root studies. Oecologia (Berl) 67: 205–208

    Article  Google Scholar 

  • Topp GC, Davis JL (1985) Measurement of soil water content using time-domain reflectometry (TDR): A field evaluation. Soil Sci Soc Am J 49: 19–24

    Article  Google Scholar 

  • Upchurch DR, Ritchie JR (1983) Root observations using a video recording system in mini-rhizotrons. Agron J 75: 1009–1015

    Article  Google Scholar 

  • Upchurch DR, Ritchie JR (1984) Battery-operated color video camera for root observations in mini-rhizotrons. Agron J 76: 1015–1017

    Article  Google Scholar 

  • Vancura V (1980) Fluorescent pseudomonads in the rhizosphere of plants and their relation to root exudates. Folia Microbiol 25: 168–173

    Article  CAS  Google Scholar 

  • Viehmeyer FJ (1929) An improved soil-sampling tube. Soil Sci 27: 147–152

    Article  Google Scholar 

  • Vincent JM (1970) A Manual for the Practical Study ot Root-nodule Bacteria. IBP Handbook No. 15. Blackwell Sci Publ, Oxford, 164 p

    Google Scholar 

  • Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants form selected ecosystems. Oecologia (Berl) 54: 317–325

    Article  Google Scholar 

  • Virginia RA, Jarrell WM, Rundel PW, Shearer G, Kohl DH (1987) The use of variation in the natural abundance of 15N to assess symbiotic nitrogen fixation by woody plants. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Ecological Studies Series, Springer-Verlag, Berlin-Heidelberg-New York, in press

    Google Scholar 

  • Virginia RA, Jenkins MB, Jarrell WM (1986) Depth of root symbiont occurrence in soil. Biol Fert Soils 2: 127–130

    Article  Google Scholar 

  • Weaver JE (1926). Root Development of Field Crops. McGraw-Hill, New York, 291 p

    Google Scholar 

  • Weaver JE, Darland RW (1949). Soil-root relationship of certain native grasses in various soil types. Ecol. Monograph 19: 303–338

    Article  Google Scholar 

  • Webster JM (1972) Economic Nematology. Academic Press, London, 563 p

    Google Scholar 

  • White SWC, Cook ER, Lawrence JR, Broecker WS (1985) The D/H ratios of sap in trees: Implications for water source and tree ring D/H ratios. Geochim Cosmochimica Acta 49: 237–246

    Article  CAS  Google Scholar 

  • White JT, Nickels JS,Parker JH, Findlay RH, Gehron MJ,Smith GA,Martz RF. (1985) Biochemical measures of the biomass, community structure and metabolic activity of the ground water biota. In: Ward CH (ed) Proceedings of the First International Conference of Ground Water Quality Research. Wiley-Interscience, New York

    Google Scholar 

  • White DC, Smith GA, Gehron MJ, Parker JH, Findlay RH,Martz RF, Fredrickson HL. (1983) The ground water aquifer microbiota: biomass, community structure and nutritional status. Dev Ind Microbiol 24: 201–211

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Virginia, R.A., Jarrell, W.M. (1987). Approaches for studying the function of deep root systems. In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (eds) Plant Response to Stress. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70868-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70868-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70870-1

  • Online ISBN: 978-3-642-70868-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics