Skip to main content

Coherent Properties of Energy-Coupling Membrane Systems

  • Chapter
Biological Coherence and Response to External Stimuli

Abstract

An understanding of the organization of biological systems is predicated upon an understanding of their energetics. Thus the present chapter will give a very broad overview of some of the current thinking in bioenergetics, with especial reference to the formation of ATP linked to the transport of electrons down their electrochemical potential gradient, as catalyzed by biomembranes containing mobile protein complexes participating in the two half-reactions (Fig. 1). Here we see how the downhill reactions of electron transport are coupled to the otherwise endergonic ATP synthase reaction through the transfer of one or more quanta of free energy (Fig. 1 A). Arguably, the major problem of bioenergetics concerns the nature of this free-energy-transducing quantum, and Fig. IB shows some of the salient possibilities under discussion (Kell and Harris 1985a). Only the celebrated chemiosmotic model may be regarded as reasonably well developed (Nicholls 1982; Harold 1986), but since its perceived shortcomings have been discussed elsewhere in extenso (e.g. Ferguson and Sorgato 1982; Kell 1979, 1986a, 1987a, 1988; Ferguson 1985; Kell and Hitchens 1983; Westerhoff et al. 1984a; Kell and Westerhoff 1985), I shall not concentrate on it in detail here, where a more heuristic overview is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adey WR (1981) Tissue interactions with non-ionising electromagnetic radiation. Physiol Rev 61: 435–514

    Google Scholar 

  • Ansari A, Berendzen J, Bowne S, Frauenfelder H, Iben IET, Sauke TB, Shyamsunder E, Young RD (1985) Protein states and proteinquakes. Proc Natl Acad Sei USA 82: 5000–5004

    Article  ADS  Google Scholar 

  • Astumian RD, Chack PB, TsongTV,Chen Y, Westerhoff HV (1987) Can free energy be transduced from electric noise? Proc Natl Acad Sei USA 84: 434–438

    Article  ADS  Google Scholar 

  • Barrow JD, Silk J (1983) The left hand of creation. The origin and evolution of the expanding universe. Unwin, London

    Google Scholar 

  • Bechtold R, Kuehn C, Lepre C, Isied SS (1986) Directional electron transfer in ruthenium-modified horse heart cytochrome c. Nature 322: 286–287

    Article  ADS  Google Scholar 

  • Becker RO, Marino AA (1982) Electromagnetism and life. State University of New York Press, Albany

    Google Scholar 

  • Becker RO, Seiden G (1985) The body electric; electromagnetism and the foundation of life. Morrow, New York

    Google Scholar 

  • Bilz H, Büttner H, Fröhlich H (1981) Electret model for the collective behaviour of biological systems. Z Naturforsch 36B: 208–212

    Google Scholar 

  • Blumenfeld LA (1983) Physics of bioenergetic processes. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Careri G, Wyman J (1984) Soliton-assisted unidirectional circulation in a biochemical cycle. Proc Natl Acad Sei USA 81: 4386–4388

    Article  ADS  Google Scholar 

  • Careri G, Geraci M, Giansanti A, Rupley JA (1985) Protonic conductivity of hydrated lysozyme powders at megahertz frequencies. Proc Natl Acad Sei USA 82: 5342–5346

    Article  ADS  Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246: R133–R151

    Google Scholar 

  • Cooper A (1984) Protein fluctuations and the thermodynamic uncertainty principle. Prog Biophys Mol Biol 44: 181–214

    Article  Google Scholar 

  • Davydov AS (1983) Energy transfer along alpha-helical proteins. In: Clementi E, Sarma RH (eds) Structure and dynamics; nucleic acids and proteins. Adenine, New York, pp 377–387

    Google Scholar 

  • Del Giudice E, Doglia S, Milani M,Fontana MP (1984) Raman spectroscopy and order in biological systems. Cell Biophys 6: 117–129

    Google Scholar 

  • Englander SW, Kallenbach NR (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16: 521–655

    Article  Google Scholar 

  • Ferguson SJ (1985) Fully delocalised chemiosmotic or localised proton flow pathways in energy coupling? A scrutiny of experimental evidence. Biochim Biophys Acta 811: 47–95

    Google Scholar 

  • Ferguson SJ, Sorgato MC (1982) Proton electrochemical gradients and energy transduction processes. Annu Rev Biochem 51: 185–217

    Article  Google Scholar 

  • Fersht AR (1985) Enzyme structure and mechanism, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Fersht AR, Leatherbarrow RJ, Wells TNC (1986) Quantitative analysis of structure-activity relationships in engineering proteins by quantitative linear free energy relationships. Nature 322: 284–286

    Article  ADS  Google Scholar 

  • Fröhlich H (1968) Long-range coherence and energy storage in biological systems. Int J Quantum Chem 2: 641–649

    Article  ADS  Google Scholar 

  • Fröhlich H (1969) Quantum mechanical concepts in biology. In: Marois M (ed) Theoretical physics and biology. North Holland, Amsterdam, pp 13–22

    Google Scholar 

  • Fröhlich H (1980) The biological effects of microwaves and related questions. Adv Electronics Phys 53: 85–152

    Article  Google Scholar 

  • Fröhlich H (1986) Coherence and the action of enzymes. In: Welch GR (ed) The fluctuating enzyme. Wiley, New York, pp 421–449

    Google Scholar 

  • Fröhlich H, Kremer F (eds) (1983) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gurd FRN, Rothgeb TM (1979) Motions in proteins. Adv Protein Chem 33: 73–165

    Article  Google Scholar 

  • Harold FM (1986) The vital force; a study of bioenergetics. Freeman, Oxford

    Google Scholar 

  • Harris CM, Kell DB (1985) On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 2. Experiments with microbial cells, protoplasts and membrane vesicles. Eur Biophys J 13: 11–24

    Google Scholar 

  • Herweijer MA, Berden JA, Slater EC (1986) Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH: Q oxidoreductase. Biochim Biophys Acta 849: 276–287

    Article  Google Scholar 

  • Jaenicke R (1984) Protein folding and protein organisation. Angew Chem Int Ed Engl 23: 395–413

    Article  Google Scholar 

  • Jardetzky O, King R (1983) Soliton theory of protein dynamics. Ciba Found Symp 93:295– 309

    Google Scholar 

  • Kell DB (1979) On the functional proton current pathway of electron transport phosphorylation; an electrodic view. Biochim Biophys Acta 549: 55–99

    Google Scholar 

  • Kell DB (1986) Localized protonic coupling; overview and critical evaluation of techniques. Methods Enzymol 127: 538–557

    Article  Google Scholar 

  • Kell DB (1987a) Forces, fluxes and the control of microbial growth and metabolism. J Gen Microbiol 133: 1651–1665

    Google Scholar 

  • Kell DB (1987b) Non-thermally excited modes and free energy transduction in proteins and biological membranes. In: Barrett TW, Pohl HA (eds) Energy transfer dynamics. Springer, Berlin Heidelberg New York, pp 237–246

    Chapter  Google Scholar 

  • Kell DB (1987c) Bioelectrochemical phenomena; their role and exploitation in science and technology. Univ Wales Rev Sei Technol 1: 64–71

    Google Scholar 

  • Kell DB (1988) Protonmotive energy-transducing systems; some physical principles and experimental approaches. In: Anthony CJ (ed) Bacterial energy transduction. Academic Press, London, in press

    Google Scholar 

  • Kell DB, Harris CM (1985a) Dielectric spectroscopy and membrane organisation. J Bioelectricity 4: 317–348

    Google Scholar 

  • Kell DB, Harris CM (1985b) On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 1. Theory and overview. Eur Biophys J 12: 181–197

    Google Scholar 

  • Kell DB, Hitchens GD (1983) Coherent properties of the membranous systems of electron transport phosphorylation. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York, pp 178–198

    Chapter  Google Scholar 

  • Kell DB, Westerhoff HV (1985) Catalytic facilitation and membrane bioenergetics. In: Welch GR (ed) Organized multienzyme systems; catalytic properties. Academic Press, New York, pp 63– 139

    Google Scholar 

  • Kell DB, Westerhoff HV (1986a) Towards a rational approach to the optimisation of flux in microbial biotransformations. Trends Biotechnol 4: 137–142

    Article  Google Scholar 

  • Kell DB, Westerhoff HV (1986b) Metabolic control theory; its role in microbiology and biotechnology. FEMS Microbiol Rev 39: 305–320

    Article  Google Scholar 

  • Kemeny G (1974) The second law of thermodynamics in bioenergetics. Proc Natl Acad Sei USA 71: 2655–2657

    Article  ADS  Google Scholar 

  • Lomdahl PS (1984) Nonlinear dynamics of globular protein. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 143–154

    Chapter  Google Scholar 

  • Lomdahl PS, Layne SP, Bigio IJ (1984) Solitons in biology. Los Alamos Science 10: 2–31

    Google Scholar 

  • Lumry R (1980) Dynamical aspects of small-molecule protein interactions. In: Braibanti A (ed) Bioenergetics and thermodynamics; model systems. Reidel, Dordrecht, pp 435–452

    Google Scholar 

  • Marino AA, Ray J (1986) The electric wilderness. San Francisco Press, San Francisco

    Google Scholar 

  • McClare CWF (1971) Chemical machines, Maxwell’s demon and living organisms. J Theor Biol 30: 1–34

    Article  Google Scholar 

  • Neumann E (1986) Elementary analysis of chemical electric field effects in biological macro- molecules. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York, pp 97–175

    Chapter  Google Scholar 

  • Nicholls DG (1982) Bioenergetics; an introduction to the chemiosmotic theory. Academic Press, London

    Google Scholar 

  • Pethig R, Kell DB (1987) The passive electrical properties of biological systems; their role in physiology, biophysics and biotechnology. Phys Med Biol 32: 933–970

    Article  Google Scholar 

  • Petronilli V, Azzone GF, Pietrobon D (1987) Analysis of mechanisms of free energy coupling and uncoupling by inhibitor titrations; theory, computer modeling and experiments. Biochemistry: in press

    Google Scholar 

  • Pietrobon D, Caplan SR (1986a) Double-inhibitor and inhibitor-uncoupler titrations. I. Analysis with a linear model of chemiosmotic coupling. Biochemistry 25: 7682–7690

    Article  Google Scholar 

  • Pietrobon D, Caplan SR (1986b) Double-inhibitor and inhibitor-uncoupler titrations. II. Analysis with a non-linear model of chemiosmotic coupling. Biochemistry 25. 7690–7696

    Google Scholar 

  • Pilla AA, Sechaud P, McLeod BR (1983) Electrochemical and electrical aspects of low-frequency electromagnetic current induction in biological systems. J Biol Phys 11: 51–5 8

    Google Scholar 

  • Ringe D, Petsko GA (1985) Mapping protein dynamics by X-ray diffraction. Progress Biophys Mol Biol 45: 197–235

    Article  Google Scholar 

  • Rowbottom M, Susskind C (1984) Electricity and medicine; history of their interaction. San Francisco Press, San Francisco

    Google Scholar 

  • Scott AC (1983) Solitons on the alpha-helix protein. In: Clementi E, Sarma RH (eds) Structure and dynamics; nucleic acids and proteins. Adenine, New York, pp 389–404

    Google Scholar 

  • Sepersu EH, Tsong TY (1984) Activation of electrogenic Rb+ uptake in human erythrocytes by an electric field. J Biol Chem 259: 7155–7162

    Google Scholar 

  • Somogyi B, Welch GR, Damjanovich S (1984) The dynamic basis of energy transduction in enzymes. Biochim Biophys Acta 768: 81–112

    Google Scholar 

  • Tsong TY (1983) Voltage modulation of membrane permeability and energy utilisation in cells. Biosci Rep 3: 487–505

    Article  Google Scholar 

  • Tsong TY, Astumian RD (1986) Absorption and conversion of electric field energy by membrane-bound ATPase. Bioelectro chem Bioenerg 15: 457 - 476

    Article  Google Scholar 

  • Webb SJ (1980) Laser-Raman spectroscopy of living cells. Phys Rep 60: 201–224

    Article  ADS  Google Scholar 

  • Welch GR (ed) (1985) Organized multienzyme systems; catalytic properties. Academic Press, New York

    Google Scholar 

  • Welch GR (ed) (1986) The fluctuating enzyme. Wiley, New York

    Google Scholar 

  • Welch GR, Berry MN (1985) Long-range energy continua and the coordination of multienzyme sequences in vivo. In: Welch GR (ed) Organized multienzyme systems; catalytic properties. Academic Press, New York, pp 419–447

    Google Scholar 

  • Welch GR, Clegg JS (eds) (1987) The organization of cell metabolism. Plenum, New York

    Google Scholar 

  • Welch GR, Kell DB (1986) Not just catalysts. The bioenergetics of molecular machines. In: Welch GR (ed) The fluctuating enzyme. Wiley, New York, pp 451–492

    Google Scholar 

  • Welch GR, Somogyi B, Damjanovich S (1982) The role of protein fluctuations in enzyme action; a review. Prog Biophys Mol Biol 39: 109–146

    Article  Google Scholar 

  • Westerhoff HV, Kell DB (1987) A control theoretic analysis of inhibitor titrations of metabolic channeling. Comments Mol Cell Biophys (in press)

    Google Scholar 

  • Westerhoff HV, Melandri BA, Venturoli G, Azzone GF, Kell DB (1984a) A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units. Biochim Biophys Acta 768: 257–292

    Google Scholar 

  • Westerhoff HV, Groen AK, Wanders RJA (1984b) Modern theories of metabolic control and their application. Biosci Rep 4: 1–22

    Article  Google Scholar 

  • Westerhoff HV, Tsong TY, Chock PB, Chen Y, Astumian RD (1986) How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci USA 83:4734– 4738

    Google Scholar 

  • Westerhoff HV, Kamp F, Tsong TY, Astumian RD (1987) Interactions between enzyme catalysis and non-stationary electric fields. In: Blank M, Findl E (eds) Interactions of electromagnetic fields with living systems. Plenum, New York, pp 203–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kell, D.B. (1988). Coherent Properties of Energy-Coupling Membrane Systems. In: Fröhlich, H. (eds) Biological Coherence and Response to External Stimuli. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73309-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73309-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73311-6

  • Online ISBN: 978-3-642-73309-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics