Skip to main content

Der optisch gepumpte Festkörperlaser

  • Chapter
Laser

Zusammenfassung

Wie in Kap. 1 und 4 dargelegt, besteht der Laser aus einem aktiven Medium, in dem Licht einer oder mehrerer Wellenlängen verstärkt wird, und einem Resonator (s. Kap. 3), in dem sich das aktive Medium befindet. Durch den Resonator wird das verstärkte Licht bei jedem Umlauf wieder in das verstärkende Medium zurückgekoppelt. Bei Pumpleistungen oberhalb des Schwellenwerts erhöht sich die Schwingungsenergie, bis die ihr proportionale Summe aus Verlusten (auf Grund von Streuung, Beugung und Absorption) und ausgekoppelter Leistung gleich dem Energiegewinn durch die gegebene Verstärkung ist. Die Verstärkung geschieht durch induzierte Emission, auf Kosten der Anregungsenergie aktiver Atome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 5

  1. Kiss, Z. J., H. R. Lewis u. R. C. Duncan Jr.: Sun pumped continuous optical maser. Appl. Phys. Letters 2, 5 (1963) 93–94.

    ADS  Google Scholar 

  2. Kaminskii, A. A., L. S. Kornienko u. A. M. Prokhorov: Continuous solar laser using Dye in CaF2. Soy. Phys. Dokl. 10, 4 (1965) 334–335.

    ADS  Google Scholar 

  3. Keck, P. H., J. J. Redmann, C. E. White u. R. E. Dekinder JR.: A new condenser for A sun-powered continuous laser. Appl. Opt. 2, 8 (1963) 827–831.

    ADS  Google Scholar 

  4. Young, C. G.: Continuous glass laser. Appl. Phys. Letters 2, 8 (1963) 151–152.

    ADS  Google Scholar 

  5. Simpson, G. R.: Continuous sun-pumped room temperature glass laser operation. Appl. Opt. 3, 6 (1964) 783–784.

    ADS  Google Scholar 

  6. Simpson, G. R.: Optical Design for sun-pumping a cw optical maser. J. Opt. Soc. Am. 52, 5 (1962) 595.

    Google Scholar 

  7. Keyes, R. J., u. T. M. Quist: Injection luminescent pumping of CaF2:U3 with GaAs diode lasers. Appl. Phys. Letters 4, 3 (1964) 50–52.

    Google Scholar 

  8. Ochs, S. A., u. J. I. Pankove: Injection-luminescence pumping of a CaF2:Dy2 laser. Proc. of the IEEE 52, 6 (1964) 713–714.

    Google Scholar 

  9. Youwa, C. G.: A sun-pumped cw one-watt laser. Appl. Opt. 5, 6 (1966) 993–997.

    ADS  Google Scholar 

  10. Maiman, T H: Stimulated optical radiation in ruby. Nature 187, 4749 (1960) 493–494.

    ADS  Google Scholar 

  11. Nelson, D. F., u. W. S. Boyle: A continuously operating ruby laser. Appl. Opt. Suppl. 1 (1962) 99–102.

    Google Scholar 

  12. Danue, V., C. A. Sacchi U. O. Svelto: Pump energy absorbed by a ruby rod in an elliptical cylinder. Alta Frequenza 33, 11 (1964) 758–759.

    Google Scholar 

  13. Bowness, C., u. D. V. Missio: On the efficiency of single and multiple elliptical laser cavities. Appl. Opt. 4, 1 (1965) 103–107.

    Google Scholar 

  14. Röss, D.: Die abbildende Beleuchtung optischer Molekularverstärker in elliptischen Spiegeln. Frequenz 16, 11 (1962) 423–428.

    Google Scholar 

  15. Schuldt, S. B., u. R. L. Aagard: An analysis of radiation transfer by means of elliptical cylinder reflectors. Appl. Opt. 2, 5 (1963) 509–513.

    Google Scholar 

  16. Ackermann, J. A.: Optimization of the parameters of multi-elliptical laser head configurations. Proc. IEEE 51, 7 (1963) 1032–1033.

    Google Scholar 

  17. Schuldt, S. B., u. R. L. Aagard: An analysis of radiation transfer by means of elliptical cylinder reflectors. Appl. Opt. 2, 5 (1963) 509–513.

    Google Scholar 

  18. Ciftan, M., C. F. Luck, C. G. Shafer u. H. Statz: A ruby laser with an elliptic configuration. Proc. IRE 49, 5 (1961) 960–961.

    Google Scholar 

  19. Mooney, C. S.: Laser pumping using an ellipsoid reflector. U.S. Patent 3238470, 5. April 1962.

    Google Scholar 

  20. Röss, D.: Exfocal pumping of optical masers in elliptical mirrors. Appl. Opt. 3, 2 (1964) 259–265.

    Google Scholar 

  21. Svelto, O., u. M. Didomenico JR.: High-index-of-refraction spherical sheath composite-rod optical masers Appl. Opt. 2, 4 (1963) 431–440.

    ADS  Google Scholar 

  22. Mckenna, J.: The focusing of light by a dielectric rod. Appl. Opt. 2, 3 (1963) 303–310.

    ADS  Google Scholar 

  23. Cooke, Charlie H, J Mckenna u. J. G. Skinner: Distribution of absorbed power in a side-pumped ruby rod. Appl. Opt. 3, 8 (1964) 957–961.

    ADS  Google Scholar 

  24. Skinner, J. G.: Pumping energy distribution in ruby rods. Appl. Opt. 3, 8 (1964) 963 bis 966.

    Google Scholar 

  25. Devlin, G. E., J Mckenna, A. D. May u. A. L. Schawlow: Composite rod optical masers. Appl. Opt. 1, 1 (1962) 11–16.

    Google Scholar 

  26. Svelto, O.: Pumping power considerations in an optical maser. Appl. Opt. 1, 6 (1962) 745–751.

    ADS  Google Scholar 

  27. Sooy, W. R., u. M. L. Stitch: Energy density distribution in a polished cylinder of laser material. J. Appl. Phys. 34, 6 (1963) 1719–1723.

    Google Scholar 

  28. Keck, P. H., J. J. Redmann, C. E. White u. D. E. Bowen: Performance of a continuous-wave neodymium laser. Appl. Opt. 2, 8 (1963) 833–837.

    ADS  Google Scholar 

  29. Boyle, W. S., u. D. F. Nelson: Continuously pumped solid state optical masers. AGARDograph 71, “Light and Heat Sensing”, London/Paris: Pergamon Press 1963, 199–206.

    Google Scholar 

  30. GüRS, K.: Das Schwingungsverhalten von optischen Rubin-Masern mit großem Spiegelabstand. Z. Naturf. 17a (1962) 990–993.

    ADS  Google Scholar 

  31. Gürs, K.: Relaxationsschwingungen in der Emission optischer Maser mit Neodym in Calciumwolframat. Z. Naturf. 18a (1963) 418–420.

    ADS  Google Scholar 

  32. Gürs, K.: Relaxationsschwingungen in der Emission optischer Rubin-Maser unter verschiedenen Arbeitsbedingungen. Z. Naturf. 18a (1963) 510–515.

    ADS  Google Scholar 

  33. Gürs, K.: Beats and modulation in optical ruby-masers. Proc. Int. Symp. on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1113–1119.

    Google Scholar 

  34. Shimizu, Tadao, Fuji° Shimizu, Minato Kawaguti u. Koichi Shimoda: A ruby laser with external mirrors of large spacing. Japan J. Appl. Phys. 4, 6 (1965) 445 bis 451.

    Google Scholar 

  35. Pole, R. V.: Conjugate-concentric laser resonator. J. Opt. Soc. Am. 55, 3 (1965) 254 bis 260.

    Google Scholar 

  36. Pole, R. V., u. H. Wieder: Continuous operation of a ruby laser during pumping pulse. Appl. Opt. 3, 9 (1964) 1086–1087.

    ADS  Google Scholar 

  37. Giirs, K.: Ein kontinuierlicher wassergekühlter Rubinlaser. Phys. Letters 16, 2 (1965) 125–127.

    ADS  Google Scholar 

  38. Birnbaum, M., u. T. L. Stocker: Mode selection properties of segmented-rod lasers. J. Appl. Phys. 34, 11 (1963) 3414–3415.

    MathSciNet  Google Scholar 

  39. Pratesi, R., G. Toraldo DI Francia u. L. R°NCni: Many-element lasers. Nuovo Cim. 34, 1 (1964) 40–50.

    Google Scholar 

  40. Pratesi, R. u. G. Toraldo DI Francia: Many-element lasers. Proc. of the Intern. Symp. on Laser-Phys. and Appl. Z. angew. Math. u. Phys. 16, 1 (1965) 68–71.

    Google Scholar 

  41. Birnbaum, M., u. T. L. Stocker: Mode selection properties of segmented-rod giant pulse lasers. J. Appl. Phys. 37, 2 (1966) 531–534.

    MathSciNet  Google Scholar 

  42. Garrett, C. G. B., W. Kaiser U. W. L. BOND: Stimulated emission into optical whispering modes of spheres. Phys. Rev. 124, 6 (1961) 1807–1809.

    ADS  Google Scholar 

  43. Nelson, D. F., u. R. J. Collins: The polarisation of the output from a ruby optical maser. Advances in Quantum Electronics, ed. by J. Singer. New York: Columbia University Press 1961, 79–83.

    Google Scholar 

  44. Walsh, P., u. G. Kemmeny: Laser operation without spikes in a ruby ring. J. Appl. Phys. 34, 4, Part I (1963) 956–957.

    Google Scholar 

  45. Röss, D.: Toroidal ruby lasers. Proc. IEEE 51, 3 (1963) 468–469.

    Google Scholar 

  46. Giob.Dmaine, J. A., u. W. Kaiser: Mode-selecting prism reflectors for optical masers. J. Appl. Phys. 35, 12 (1964) 3446–3451.

    ADS  Google Scholar 

  47. Manger, H.: Quasi-continuous operation of a CaW04: Nd3 maser using long duration pumping pulses. Proc. IEEE 53, 1 (1965) 83–84.

    Google Scholar 

  48. Jackson, D. A., u. K. Narahari RAC: Resolving power in the near infrared of the fabryperot interferometer with gold and with silver coatings. J. Opt. Soc. Am. 53, 5 (1963) 558–567.

    Google Scholar 

  49. Greene, R. L., J. L. Emmett u. A. L. Schawlow: Effect of ultraviolett pumping on ruby laser output. Appl. Opt. 5, 2 (1966) 350–351.

    ADS  Google Scholar 

  50. Aagard, R. L.: Losses in a pulsed ruby laser. J. Opt. Soc. Am. 53, 8 (1963) 911–914.

    ADS  Google Scholar 

  51. Nelson, D. F., u. J. P. Remeika: Laser action in a flux-grown ruby. J. Appl. Phys. 35, 3 (1964) 522–529.

    Google Scholar 

  52. Gums, K.: Solid state lasers with cw emission. Proc. Intern. Symp. on Laser Physics and Appl.. J. Appl. Math. and Phys. (Schweiz) 16, 1 (1965) 49–62.

    Google Scholar 

  53. Mccumber, D. E., u. M. D. Sturge: Linewidth and temperature shift of the R lines in ruby. J. Appl. Phys. 34, 6 (1963) 1682–1684.

    Google Scholar 

  54. Aagard, R. L.: Determination of RI linewidths in ruby using a pulsed ruby laser. J. Appl. Phys. 34, 7 (1963) 3631–3632.

    ADS  Google Scholar 

  55. Nelson, D. F., u. M. D. Sturge: Relation between absorption and emission in the region of the R lines of ruby. Phys. Rev. 137, 4A (1965) A 1117—A 1130.

    Google Scholar 

  56. Gürs, K.: Bestimmung der Lebensdauer von Anregungszuständen durch Zeitmessung an optischen Masern. Z. f. Naturf. 17a, 10 (1962) 883–885.

    Google Scholar 

  57. Yariv, A., S. P. S. Porto u. K. Nassau: Optical maser emission from trivalent praseodymium in calcium tungstate. J. Appl. Phys. 33, 8 (1962) 2519–2521.

    ADS  Google Scholar 

  58. Fleck, J. A. JR., u. R. E. Kidder: Coupled-mode laser oscillation. J. Appl. Phys. 35, 10 (1964) 2825–2831.

    Google Scholar 

  59. Tang, C. L., H. Statz u. G. Demars: Spectral output and spiking behavior of solid-state lasers. J. Appl. Phys. 34, 8 (1963) 2289–2295.

    ADS  Google Scholar 

  60. Tang, C. L., H. Statz U. G. Demars: Regular spiking and single-mode operation of ruby laser. Appl. Phys. Letters 3, 11 (1963) 222–224.

    ADS  Google Scholar 

  61. Evtuhov, V., u. J. K. Neeland: Study of the output spectra of ruby lasers. IEEE J. Q. E. QE-1, 1 (1965) 7–12, und Specht, W. A. JR., J. K. Neeland, V. Evtuhov: Output spectra of Nd: YAG and ruby lasers and implications for laser linewidth determining mechanisms. IEEE J. Q. E., im Druck.

    Google Scholar 

  62. Hughes, T. P.: Time-resolved interferometry of ruby laser emission. Nature 195, 4839 (1962) 325–328.

    ADS  Google Scholar 

  63. Adamsox, M. C., T. P. Hughes u. K. M. Young: The effects of temperature on ruby optical maser mode sequences. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1459–1467.

    Google Scholar 

  64. Vienot, J. C., u. J. Bulabois: Analyse spectrale et resolution spatiale et temporelle du faisceau emis par un maser optique à rubis. Proc. Int. Congress on Quantum Electronic Paris Febr. 1963, Paris: Dunod 1964, 1469–1475.

    Google Scholar 

  65. Vanukov, M. P., V. I. Issayenro u. V. V. Lubinow: Etude des variations temporelles de la composition spectrale et de la répartition angulaire du rayonnement emis par les lasers. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1477–1482.

    Google Scholar 

  66. Chizhikova, Z. A., M. D. Galanin, V. V. Korobkin, A. M. Leontovitch u. V. N. Smortchgov: Coherence, spectra time scanning and pulsations of the laser emission. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1483 bis 1491.

    Google Scholar 

  67. Collins, R. J., D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett u. W. Kaiser: Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby. Phys. Rev. Letters 5, 7 (1960) 303–305.

    ADS  Google Scholar 

  68. Koozekanani, S., M. Ciftan u. A. Krutchxoff: Observation of quasi cw operation of an optical ruby maser. Appl. Opt. 1, 3 (1962) 372–373.

    ADS  Google Scholar 

  69. Gürs, K.: Periodische Relaxationsschwingungen und Emission ohne Spikes bei einem kurzen Rubinlaser. Z. Naturf. 18a, 12 (1963) 1363–1365.

    ADS  Google Scholar 

  70. Kaiser, W., C. G. B. Garrett u. D. L. Wood: Fluorescence and optical maser effects in CaF2: Sm++. Phys. Rev. 123, 3 (1961) 766–776.

    ADS  Google Scholar 

  71. Sorokin, P. P., M. J. Stevenson, J. R. Lankabd u G D. PETTIT: Spectroscopy and optical maser action in SrF2: Sm2 . Phys. Rev. 127, 2 (1962) 503–508.

    ADS  Google Scholar 

  72. Kiss, Z. J.: The CaF2: Tm2+ and the CaF2: Dy2+ optical maser systems. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 805–815.

    Google Scholar 

  73. Duncan, R. C., JR., u. Z. J. Kiss: Continuously operating CaF2: Tm2 optical maser. Appl. Phys. Letters 3, 2 (1963) 23–24.

    Google Scholar 

  74. Jonxson, L. F., G. D. Boyd u. K. Nassau: Optical maser characteristics of Ho3+ in CaW04. Proc. IRE 50, 1 (1962) 87–88.

    Google Scholar 

  75. Sorokin, P. P., u. M. J. Stevenson: Stimulated emission from CaF2: Us+ and CaF2: Sm2 . Advances in Quantum Electronics. New York: Columbia University Press 1961, 65–77.

    Google Scholar 

  76. Bostick, H. A., u. J. R. O’connor: Infrared oscillations from CaF2: U3+ and BaF2: U2 masers. Proc. IRE 50, 2 (1962) 219–220.

    Google Scholar 

  77. Gurs, K.: Continuous-wave solid-state-lasers. Paper presented at the XVth General Assembly of the U.R.S.I., 5–15 September 1966; and Progress in Radio Science 1963 to 1966, (1967) 2206–2219.

    Google Scholar 

  78. Ewanizky, T. F., P. J. Caplan u. J. R. Pastore: Polarization of CaF2: Sm2 fluorescence. J. Chem. Phys. 43, 12 (1965) 4351–4353.

    ADS  Google Scholar 

  79. Sun Lu, u. T. A. Rabson: The polarization of light from Nd2-glass lasers. Appl. Phys. Letters 7 (1965) 219–220.

    ADS  Google Scholar 

  80. Boersch, H., G. Herziger, S. Maslowski u. H. Weber: Reproduzierbare Wellenformen niedriger Ordnung beim Rubinlaser. Phys. Letters 4, 2 (1963) 86–88.

    ADS  Google Scholar 

  81. Kulevsky, L. A., P. P. Pashinin u. A. M. Prokhorov: Travelling wave ruby optical maser. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1065–1070.

    Google Scholar 

  82. Tang, C. L., H. Statz, G. A. Demars u. D. T. Wilson: Spectral properties of a single-mode ruby laser: Evidence of homogeneous broadening of the zero-phonon lines in solids. Phys. Rev. 136, 1A (1964) 1–8.

    Google Scholar 

  83. Skinner, J., u. J. E. Geusic: Diffraction limited ruby oscillator. J. Opt. Soc. Am. 52, 11 (1962) 1319.

    Google Scholar 

  84. Burch, J. M.: Ruby masers with afocal resonators. J. Opt. Soc. Am. 52, 5 (1962) 602.

    Google Scholar 

  85. Rigrod, W. W.: Isolation of axi-symmetrical optical-resonator modes. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1285–1290.

    Google Scholar 

  86. Okaya, A.: Mode suppression on lasers by metal wires. Proc. IEEE 52, 12 (1964) 1741.

    Google Scholar 

  87. Gprs, K., u. R. Müller: Internal modulation of optical masers. Proc. Symp. on Optical Masers, Polytechnic Institute of Brooklyn, April 16, 1963, Polytechn. Press (1963) 243–252.

    Google Scholar 

  88. Gürs, K., u. R. Müller: Breitband-Modulation durch Steuerung der Emission eines optischen Masers (Auskoppelmodulation). Phys. Letters 5, 3 (1963) 179–181.

    ADS  Google Scholar 

  89. Free, J., u. A. Korpel: Laser emission from a moving ruby rod. Proc. IEEE 52, 1 (1964) 90.

    Google Scholar 

  90. Brunton, J. H.: Polarization of the light output from a ruby optical maser. Appl. Opt. 3, 11 (1964) 1241–1246.

    ADS  Google Scholar 

  91. Pauthier, M., R. Gautier, S. Deiness u. G. Amat: Etude expérimentale de la lumière emise par un laser à rubis. J. Phys. Radium 22 (1961) 828–832.

    Google Scholar 

  92. Nedderman, H. C., Y. C. Klang u. F. C. Unterleitner: Control of ruby laser oscillation by an inhomogeneous magnetic field. Proc. IRE 50, 7 (1962) 1687–1688.

    Google Scholar 

  93. Kaiser, W., S. Sugano u. D. L. Wood: Splitting of the emission lines of ruby by an external electric field. Phys. Rev. Letters 6, 11 (1961) 605–607.

    ADS  Google Scholar 

  94. Kaiser, W., U. H. Lessing: Effects of an electric field on the laser emission of ruby. Appl. Phys. Letters 2, 11 (1963) 206–208.

    ADS  Google Scholar 

  95. Kiss, Z. J.: Zeeman tuning and internal modulation of the CaF2: Dy2 laser. Appl. Phys. Letters 3, 9 (1963) 145–148.

    ADS  Google Scholar 

  96. Peressini, E. R.: Ruby laser giant-pulse generation by gain-switching. Appl. Phys. Letters 3, 11 (1963) 203–205.

    ADS  Google Scholar 

  97. Basov, N. G., V. S. Zuev u. P. G. Kryukov: Power increase in a pulsed ruby laser by means of modulation of resonator Q. J. Exptl. Theoret. Phys. (USSR) 43 (1962) 353 bis 355.

    Google Scholar 

  98. Collins, R. J., u. P. Kisliuk: Control of population inversion in pulsed optical masers by feedback modulation. J. Appl. Phys. 33, 6 (1962) 2009–2011.

    Google Scholar 

  99. Benson, R. C., u. M. R. Mirarchi: The spinning reflector technique for ruby laser pulse control. IEEE Trans. MIL 8, 1 (1964) 13–21.

    Google Scholar 

  100. Arecchi, F. T., G. Potenza u. A. SONA: Transient phenomena in Q-switched lasers: Experimental and theoretical analysis. Nuovo Cimento 34, 6 (1964) 1458–1472.

    Google Scholar 

  101. Sugano, S., Y. Tanabe u. I. Tsujikawa: Absorption spectra of Cr3 in Al203. J. Phys. Soc. Japan 13, 8 (1958) 880–910.

    ADS  Google Scholar 

  102. Danielson, G. E. JR., u. A. J. Demaria: Internal gating of optically pumped, high-gain, solid-state lasers. Appl. Phys. Letters 5, 6 (1964) 123–125.

    ADS  Google Scholar 

  103. Mcclung, F. J., u. R. W. Hellwarth: Characteristics of giant optical pulsations from ruby. Proc. IEEE 51, 1 (1963) 46–53.

    Google Scholar 

  104. Helfrich, J. L.: Faraday effect as a Q-switch for ruby laser. J. Appl. Phys. 34, 4 (1963) 1000–1001.

    ADS  Google Scholar 

  105. Vuylsteke, A. A.: Theory of laser regeneration switching. J. Appl. Phys. 34, 6 (1963) 1615–1622.

    ADS  Google Scholar 

  106. Kafalas, P., J. I. Masters u. E. M. E. Murray: Photosensitive liquid used as a nondestructive passive Q-switch in a ruby laser. J. Appl. Phys. 35, 8 (1964) 2349–2350.

    ADS  Google Scholar 

  107. Softer, B. H.: Giant pulse laser operation by a passive, reversibly bleachable absorber. J. Appl. Phys. 35, 8 (1964) 2551.

    ADS  Google Scholar 

  108. Sorokin, P. P., J. J. Luzzl, J. R. Lanxard u. G. D. Pettit: Ruby laser Q-switching elements using phthalocyanine molecules in solution. IBM Journ. Res. and Dev. 8, 2 (1964) 182–184.

    Google Scholar 

  109. Röss, D.: Selektiv sättigbare organische Farbstoffe als optische Schalter — optische Impulsverstärker. Z. Naturf. 20a, 5 (1965) 696–700.

    ADS  Google Scholar 

  110. Bret, G., u. F. Gires: Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches. Appl. Phys. Letters 4, 10 (1964) 175–176.

    Google Scholar 

  111. Damon, E. K.: Theory and technique of giant-pulse lasers. Microwaves 3, 7 (1964) 40–47.

    Google Scholar 

  112. Armstrong, J. A.: Saturable optical absorption in phthalocyanine dyes. J. Appl. Phys. 36, 2 (1965) 471–473.

    MathSciNet  ADS  Google Scholar 

  113. Bowe, P. W. A., W. E. K. Gibbs u. J. Tregellas-Williams: Lifetimes of saturable absorbers. Nature 209, 5018 (1966) 65–66.

    ADS  Google Scholar 

  114. Kosoxocky, W. F., S. E. Harrison u. R. Stander: Observations of the triplet state in phthalocyanines. J. Chem. Phys. 43, 3 (1965) 831–833.

    ADS  Google Scholar 

  115. Soffer, B. H., u. R. H. Hoskins: Generation of giant pulses from a neodymium laser by a reversibly bleachable absorber. Nature 204, 4955 (1964) 276.

    Google Scholar 

  116. Mcleary, R., u. P. W. Bowe: The effect of absorber relaxation on passive Q-switch laser performance. Appl. Phys. Letters 8, 5 (1966) 116–117.

    Google Scholar 

  117. Carmichael, C. H., u. G. N. Simpson: Generation of giant optical maser pulses using a semiconductor mirror. Nature 202, 4934 (1964) 787.

    Google Scholar 

  118. Sooy, W. R., M. Geller u D P Bortfeld: Switching of semiconductor reflectivity by a giant pulse laser. Appl. Phys. Letters 5, 3 (1964) 54–56.

    ADS  Google Scholar 

  119. Birnbaum, M.: Modulation of the reflectivity of semiconductors. J. Appl. Phys. 36, 2 (1965) 657–658.

    MathSciNet  ADS  Google Scholar 

  120. Stocker, T. L., u. M. Birnbaum: Giant-pulse-laser operation with semiconducting mirrors. Autumn Meeting, Am. Phys. Soc., Chicago/Ill., Oct. 28–30, 1965.

    Google Scholar 

  121. Farkas, G., u. I. Kertesz: Nonlinear polarizers as A-independent, variable Q-switches for lasers. Phys. Letters 20, 6 (1966) 634–635.

    ADS  Google Scholar 

  122. Melamed, N. T., u. C. Hirayama: Laser action in uranyl-sensitized Nd-doped glass. Appl. Phys. Letters 6, 3 (1965) 43–45.

    MathSciNet  Google Scholar 

  123. Gandy, H. W., R. J. Ginther u. J. F. Weller: Laser oscillations and self Q-switching in triply activated glass. Appl. Phys. Letters 7, 9 (1965) 233–236.

    ADS  Google Scholar 

  124. Shiner, W., E. Snitzer u. R. Woodcock: Self Q-switched Nd3+ glass laser. Phys. Letters 21, 4 (1966) 412–413.

    ADS  Google Scholar 

  125. Softer, B. H., u. B. B. Mcfarland: Frequency locking and dye spectral hole burning in Q-spoiled lasers. Appl. Phys. Letters 8, 7 (1966) 166–169.

    Google Scholar 

  126. Ernest, J., M. Mighon u. J. Debbie: Giant optical pulse shortening through pulse-transmission mode operation of a ruby laser. Phys. Letters 22, 2 (1966)-149 and Michon, M., J. Ernest u. R. AUFFRET: Pulsed transmission mode operation in the case of a mode locking of the modes of a non Q-spoiled ruby laser. Phys. Letters 21, 5 (1966) 514–515.

    Google Scholar 

  127. Frantz, L. M.: Dynamics of the giant pulse laser. Appl. Opt. 3, 3 (1964) 417–420.

    ADS  Google Scholar 

  128. Wagner, W. G., u. B. A. Lengyel: Evolution of the giant pulse in a laser. J. Appl. Phys. 34, 7 (1963) 2040–2046.

    Google Scholar 

  129. Menat, M.: Giant pulses from a laser: Optimum conditions. J. Appl. Phys. 36, 1 (1965) 73–76.

    ADS  Google Scholar 

  130. Wang, CH. C.: Optical giant pulses from a Q-switched laser. Proc. of the IEEE 51, 12 (1963) 1767.

    Google Scholar 

  131. Kay, R. B., u. G. S. Waldmann: Complete solutions to the rate equations describing Q-spoiled and PTM laser operation. J. Appl. Phys. 36, 4 (1965) 1319–1323.

    Google Scholar 

  132. Schaack, G.: Dynamik des Riesenimpulses im Rubin-Laser. Z. angew. Phys. 17, 6 (1964) 385–392.

    Google Scholar 

  133. Szabo, A., u. R. A. Stein: Theory of laser giant pulsing by a saturable absorber. J. Appl. Phys. 36, 5 (1965) 1562–1566.

    Google Scholar 

  134. Mcclung, F. J., u. D. Werner: Longitudinal mode control in giant pulse lasers. IEEE J. Q. E. QE-1, 2 (1965) 94–99.

    Google Scholar 

  135. Sooy, W. R.: The natural selection of modes in a passive Q-switched laser. Appl. Phys. Letters 7, 2 (1965) 36–37.

    ADS  Google Scholar 

  136. Hercher, M.: Single-mode operation of a Q-switched ruby laser. Appl. Phys. Letters 7, 2 (1965) 39–41.

    ADS  Google Scholar 

  137. Waynant, R. W., Cullom, J. H., I. T. Basil u. G. D. Baldwin: Beam divergence measurement for Q-switched ruby lasers. Appl. Opt. 4, 12 (1965) 1648–1651.

    ADS  Google Scholar 

  138. Nelson, D. F., u. W. S. Boyle: A continuously operating ruby laser. Appl. Opt. 1, 2 (1962) 181–183.

    Google Scholar 

  139. Evtuhov, V., u. J. K. Neeland: Continuous operation of a ruby laser at room temperature. Appl. Phys. Letters 6, 4 (1965) 75–76.

    Google Scholar 

  140. Röss, D.: Room temperature ruby cw ruby laser. Microwaves 4, 4 (1965) 29–33.

    Google Scholar 

  141. Johnson, L. F., G. D. Boyd, K. Nassau u. R. R. Soden: Continuous operation of a solid-state optical maser. Phys. Rev. 126, 4 (1962) 1406–1409.

    ADS  Google Scholar 

  142. Mrs, K.. u. H. Westermeier: Schwingungstypen hoher Symmetrie beim koutinuierlichen wassergekühlten Laser mitNeodym in Calciumwolframat. Z. Naturf. 19 a, 12 (1964) 1357–1362.

    Google Scholar 

  143. Pressley, R. J., u. P. V. Goedertier: Int. Electron. Devices Meeting, Washington, Oct. 20–22 (1965) 7. 7.

    Google Scholar 

  144. Johnson, L. F., J. E. Geusic u. L. G. Van Uitert: Efficient, high-power coherent emission from Hoe ions in yttrium aluminium garnet, assisted by energy transfer. Appl. Phys. Letters 8 (1966) 200–202.

    ADS  Google Scholar 

  145. Görlich, P., II. Karras, G. Kötitz u. R. Lehmann: Spectroscopie properties of activated laser crystals I).Rev. Art., Phys. Stat. Sol. 5, (1964) 437–461.

    Google Scholar 

  146. Görlich, P., H. Karras, G. Kötitz u. R. Lehmann: Spectroscopie properties of activated laser crystals (II).Rev. Art., Phys. Stat. Sol. 6 (1964) 277–318.

    Google Scholar 

  147. Görlich, P., H. Karras, G. Kötitz U. R. Lehmann: Spectroscopie properties of activated laser crystals (III). Rev. Art., Phys. Stat. Sol. 8 (1965) 385–429.

    Google Scholar 

  148. Mcfarlane, R. A.: A summary of available data on the physical properties of synthetic sapphire. Supplied by Adolf Meller Co.

    Google Scholar 

  149. Maiman, T. H., R. H. Hoskins, I. J. D. Haenens, C. K. Asawa U. V. Evtuhov: Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby. Phys. Rev. 123, 4 (1961) 1151–1157.

    ADS  Google Scholar 

  150. D’haenens, I. J., u. C. K. Asawa: Stimulated and fluorescent optical emission in ruby from 4,2° to 300°K: Zero-field splitting and mode structure. J. Appl. Phys. 33, 11 (1961) 3201–3208.

    Google Scholar 

  151. Kiang, Y. C., J. Stephany u. F. C. Unterleitner: Visible spectrum absorption cross section of Cr2 in the 2E state of pink ruby. IEEE J. Q. E. QE-1, 7 (1965) 295 bis 298.

    Google Scholar 

  152. Siiinada, M., S. Sugano u. T. Kushida: Absorption spectrum of optically pumped ruby. II Theoretical analyses. Technical Report of ISSP A, 196 (1966).

    Google Scholar 

  153. Meyers, F. J.: R2 line optical maser action in ruby. J. Appl. Phys. 33, 10 (1962) 3139 bis 3140.

    Google Scholar 

  154. Schawlow, A. L., u. G. E. Devlin: Simultaneous optical maser action in two ruby satellite lines. Phys. Rev. Letters 6, 3 (1961) 96–98.

    Google Scholar 

  155. Wieder, I., u. L. R. Sables: Stimulated optical emission from exchange-coupled ions of Cr2 in Al2O3. Phys. Rev. Letters 6, 3 (1961) 95–96.

    Google Scholar 

  156. Hubbard, C. J., u. E. W. Fisher: Ruby laser action at the R2 wavelength. Appl. Opt. 3, 12 (1964) 1499–1500.

    MathSciNet  Google Scholar 

  157. Calviello, J. A., E. W. Fisher U. Z. H. Heller: Simultaneous laser oscillation at R1 and R2 wavelengths in ruby. IEEE J. Q. E. QE-1, 3 (1965) 132.

    ADS  Google Scholar 

  158. Koningstein, J. A.: Energy levels and crystal-field calculations of europium and terbium in yttrium aluminum garnet. Phys. Rev. 136, 3A (1964) A 717—A 725.

    Google Scholar 

  159. Koninustein, J. A., u. J. E. GEUSIC: Energy levels and crystal-field calculations of neodymium in yttrium aluminium garnet. Phys. Rev. 136, 3A (1964) A 711—A 716.

    Google Scholar 

  160. Geusic, J. E., H M Marcos u. L. G. Van Uitert: Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Letters 4, 10 (1964) 182–184.

    ADS  Google Scholar 

  161. Kiss, Z. J., u. R. C. Duncan: Cross-pumped CrF.–Nds+: YAG laser system. Appl. Phys. Letters 4, 10 (1964) 200–202.

    Google Scholar 

  162. Johnson, L. F., J. E. Geusic u. L. G. Van Uitert: Coherent oscillations from Tm3+, Ho3, Yb3+ and Era ions in yttrium aluminium garnet. Appl. Phys. Letters 7, 5 (1965)127–129.

    Google Scholar 

  163. Johnson, L. F.: Characteristics of the CaW04: Nd3+ optical maser. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 1021–1035.

    Google Scholar 

  164. Nassau, K: Alkali metal ion charge compensation in calcium tungstate optical maser crystals. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 833–839.

    Google Scholar 

  165. Johnson, L. F.: Optical maser characteristics of rare-earth ions in crystals. J. Appl. Phys. 34, 4 (1963) 897–909.

    ADS  Google Scholar 

  166. Dieke, G. H., u. H. M. Crosswhite: The spectra of the doubly and triply ionized rare earths. Appl. Opt. 2, 7 (1963) 675–686.

    Google Scholar 

  167. Kiss, Z. J., u. R. C. Duncan, JR.: Optical maser action in CaW04: Er3. Proc. IRE 50, 6 (1962) 15–31.

    Google Scholar 

  168. Johnson, L. F., L. G. Van Uitert, J. J. Rubin u. R. A. THOMAS: Energy transfer from Era to Tm3 and Hoa+ ions in crystals. Phys. Rev. 133, 2A (1964) A 494—A 498.

    Google Scholar 

  169. Duncan, R. C.: Continuous room-temperature Nd3+: CaMo04 laser. J. Appl. Phys. 36, 3 (1965) 874–875.

    ADS  Google Scholar 

  170. Johnson, L. F., u. R. A. THOMAS: Maser oscillations at 0,9 and 1,35 microns in CaW04: Nd3+. Phys. Rev. 131, 5 (1963) 2038–2040.

    Google Scholar 

  171. Peterson, G. E., u. P. M. BRIDENBAUGH: Laser oscillation at 1,06 v. in the series Nao,SGda,3_xN4W04. Appl. Phys. Letters 4, 10 (1964) 173–175.

    Google Scholar 

  172. Johnson, L. F., G. D. Boyd u. K. Nassau: Optical maser characteristics of Tm3+ in CaW04. Proc. IRE 50, 1 (1962) 86–87.

    Google Scholar 

  173. Johnson, L. F., u. R. R. Soden: Optical maser characteristics of Nd3+ in SrMo04. J. Appl. Phys. 33, 2 (1962) 757.

    Google Scholar 

  174. Ballman, A A, S P S Porto u. A. YARIV: Calcium niobate Ca(Nb03)2 — A new laser host crystal. J. Appl. Phys. 34, 11 (1963) 3155–3156.

    ADS  Google Scholar 

  175. Johnson, L. F.: Optical maser characteristics of Nd3+ in CaF2. J. Appl. Phys. 33, 2 (1962) 756.

    ADS  Google Scholar 

  176. Kaminskii, A. A., L. S. Kornienko, L. V. Makarenko, A. M. Prokhorov u. M. M. Fursisov: Stimulated emission of Nd3+ in CaF2 at room temperature. Soy. Phys. JETP 19, 1 (1964) 262–263.

    Google Scholar 

  177. Wittke, J. P., Z. J. Kiss, R. C. DUNCAN u. J. J. McCoRMICK: Uranium doped calcium fluoride as a laser material. Proc. IEEE 51, 1 (1963) 57–62.

    Google Scholar 

  178. Porto, S. P. S., u. A. Yariv: Trigonal sites and 2.24 micron coherent radiation of U3+ in CaF2. J. Appl. Phys. 33, 4 (1962) 1620–1621.

    Google Scholar 

  179. Sorokin, P. P., u. M. J. Stevenson: Stimulated infrared emission from trivalent uranium. Phys. Rev. Letters 5, 12 (1960) 557–559.

    Google Scholar 

  180. Boyd, G. D., R. J. Collins, S. P. S. Porto, A. Yariv u. W. A. Hargreaves: Excitation, relaxation, and continuous maser action in the 2.613-micron transition of CaF2: U3+. Phys. Rev. Letters 8, 7 (1962) 269–272.

    ADS  Google Scholar 

  181. Pollack, S. A.: Stimulated emission in CaF2: Era+. Proc. IEEE 51, 12 (1963) 1793 bis 1794.

    Google Scholar 

  182. Porto, S. P. S., u. A. YARIV: Optical maser characteristics of BaF2: U3+. Proc. IRE 50, 6 (1962) 1542–1543.

    Google Scholar 

  183. Porto, S. P. S., u. A. Yariv: Excitation, relaxation and optical maser action at 2,407 microns in SrF2: U3+. Proc. IRE 50, 6 (1962) 1543–1544.

    Google Scholar 

  184. Mcclure, D. S., u. Z. Kiss: Survey of the spectra of the divalent rare-earth ions in cubic crystals. J. Chem. Phys. 39, 12 (1963) 3251–3257.

    Google Scholar 

  185. Johnson, L. F.: Continuous operation of the CaF2: Dye optical maser. Proc. IRE 50, 6 (1962) 1691–1692.

    Google Scholar 

  186. Yariv, A.: Continuous operation of a CaF2: Dye optical maser. Proc. IRE 50, 7 (1962) 1699–1700.

    Google Scholar 

  187. Kiss, Z. J., u. R. C. Duncan, JR.: Pulsed and continuous optical maser action in CaF2: Dye+. Proc. IRE 50, 6 (1962) 1531–1532.

    Google Scholar 

  188. Kiss, Z. J., u. R. C. Duncan, JR.: Optical maser action in CaF2: Tins. Proc. IRE 50, 6 (1962) 1532–1533.

    Google Scholar 

  189. Kiss, Z. J.: Energy levels of divalent thulium in CaF2. Phys. Rev. 127, 3 (1962) 718 bis 724.

    Google Scholar 

  190. Wool, D. L., u. W. Kaiser: Absorption and fluorescence of Sm2+ in CaF2, SrF2 and BaF2. Phys. Rev. 126, 6 (1962) 2079–2088.

    ADS  Google Scholar 

  191. Sorokin, P. P., u. M. J. STEVENSON: Solid state optical maser using divalent samarium in calcium fluoride. IBM J. Res. and Dev. 5, 1 (1961) 56–58.

    Google Scholar 

  192. Yarn, A., J. P. Gordon: The laser. Proc. IEEE 51, 1 (1963) 4–29.

    Google Scholar 

  193. Johnson, L. F., R. E. Dietz u. H. J. Guggenheim: Optical maser oscillation from NiI in MgF2 involving simultaneous emission of phonons. Phys. Rev. Letters 11, 7 (1963) 318–320.

    ADS  Google Scholar 

  194. Johnson, L. F., R. E. Dietz u. H. J. Guggenheim: Spontaneous and stimulated emission from Coe+ ions in MgF2 and ZnF2. Appl. Phys. Letters 5, 2 (1964) 21–22.

    ADS  Google Scholar 

  195. Solomon, R., u. L. Mueller: Stimulated emission at 5985 A from Pr3+ in LaF3. Appl. Phys. Letters 3, 8 (1963) 135–137.

    Google Scholar 

  196. O’connor, J. R.: Lattice energy transfer and stimulated emission from CaF3: Nd3+. Appl. Phys. Letters 4, 12 (1964) 208–209.

    ADS  Google Scholar 

  197. Snitzer, E.: Optical maser action of Nd3+ in a barium crown glass. Phys. Rev. Letters 7, 12 (1961) 444–446.

    ADS  Google Scholar 

  198. Deeg, E., M. Faulstich u. N. Neuroth: Glas als Werkstoff far Festkörperlaser. Z. Glaskunde 39, 3 (1966) 104–112.

    Google Scholar 

  199. Maurer, R. D.: Nd3+ fluorescence and stimulated emission in oxide glasses. Proc. of t he Symposium on Opt. Masers, New York: Polytechnic Press 1963, 435–449.

    Google Scholar 

  200. Maurer, R. D.: Operation of a Nd3+ glass optical maser at 9180 A. Appl. Opt. 2, 1 (1963) 87–88.

    ADS  Google Scholar 

  201. Snitzer, E.: Neodymium glass laser. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963, Paris: Dunod 1964, 999–1019.

    Google Scholar 

  202. Mauer, P. B.: Laser action in neodymium-doped glass at 1,37 g. Appl. Opt. 3, 1 (1964) 152.

    ADS  Google Scholar 

  203. Pearson, A. D., S. P. S. Porto u. W. R. Northover: Laser oscillations at 0.918, 1,057 and 1,401 microns in Nd3+-doped borate glasses. J. Appl. Phys. 35, 6 (1964) 1704 bis 1706.

    Google Scholar 

  204. Gandy, H. W., u. R. J. Ginther: Simulated emission of ultraviolet radiation from gadolinium-activated glass. Proc. Int. Congress on Quantum Electronics, Paris Fehr. 1963, Paris: Dunod 1964, 1045–1054.

    Google Scholar 

  205. Gandy, H. W., u. R. J. Ginther: Stimulated emission from holmium-activated glass. Proc. IRE 50, 10 (1962) 2113–2114.

    Google Scholar 

  206. Etzel, H. W., H. W. Gandy u. R. J. Ginther: Stimulated emission of infrared radiation from ytterbium activated silicate glass. Appl. Opt. 1, 4 (1962) 534–536.

    ADS  Google Scholar 

  207. Pearson, A. D., u. G. E. Peterson: Energy exchange processes and laser oscillation in glasses. Proc. 7th Int. Congress on Glass 10, (1965) 1–11.

    Google Scholar 

  208. Gandy, H. W., u. R. J. Ginther: Simultaneous laser action of neodymium and ytterbium ions in silicate glass. Proc. IRE 50, 10 (1962) 2114–2115.

    Google Scholar 

  209. Pearson, A. D., u. S. P. S. Porto: Nonradiative energy exchange and laser oscillation in Yb3-Nd3+-doped borate glass. Appl. Phys. Letters 4, 12 (1964) 202–204.

    Google Scholar 

  210. Snitzer, E., u. R. WooDcocx: Yb3+-Er3 glass laser. Appl. Phys. Letters 6, 3 (1965) 45–46.

    ADS  Google Scholar 

  211. Woodcock, R., u. E. Snitzer: Energy transfer from YbI+ to Er3+ in a silicate glass. J. Opt. Soc. Am. 55, 5 (1965) 608.

    Google Scholar 

  212. Deshazer, L. G., u. L. G. Komai: Fluorescence conversion efficiency of neodymium glass. J. Opt. Soc. Am. 55, 8 (1965) 940–944.

    Google Scholar 

  213. Becker, C. H., G. C. Cox u. D. B. Mclennan: Quartz ultraviolet lasers. Proc. IEEE 51, 2 (1963) 358–359.

    Google Scholar 

  214. Hoskins, R. H., u. B. H. Soffer: Stimulated emission from Y203:Nd3. Appl. Phys. Letters 4, 1 (1964) 22–23.

    ADS  Google Scholar 

  215. Chang, N. C.: Fluorescence and stimulated emission from trivalent europium in yttrium oxide. J. Appl. Phys. 34, 12 (1963) 3500–3504.

    ADS  Google Scholar 

  216. Soffer, B. H., u. R. H. Hoskins: Fluorescence and stimulated emission from Gd203: Nd3 at room temperature. Appl. Phys. Letters 4, 6 (1964) 113–114.

    Google Scholar 

  217. Soffer, B. H., u. R. H. Hoskins: Energy transfer and ew laser action in Tm3: Er203. Appl. Phys. Letters 6, 10 (1965) 200–201.

    Google Scholar 

  218. Fink, E. L.: IJV laser emission by crystal excitons. Appl. Phys. Letters 7, 4 (1965) 103 bis 106.

    Google Scholar 

  219. Fritz, B., u. E. Menke: Laser effect in KCl with FA(Li) centers. Solid State Com. 3 (1965) 61–63.

    Google Scholar 

  220. Heller, A: A high-gain room-temperature liquid laser: Trivalent neodymium in selenium oxychloride. Appl. Phys. Letters 9, 3 (1966) 106–108.

    MathSciNet  ADS  Google Scholar 

  221. Lempicki, A., u. A. Heller: Characteristics of the Nd3: Se0C12 liquid laser. Appl. Phys. Letters 9, 3 (1966) 108–110.

    Google Scholar 

  222. White, D., u. D. Gregg: Optical distortion in ruby lasers during pumping. Appl. Opt. 4, 8 (1965) 1034.

    ADS  Google Scholar 

  223. Bardsley, W., U. G. W. Green: Optical scattering in calcium fluoride crystals. Brit. J. Appl. Phys. 16, 6 (1965) 911–912.

    ADS  Google Scholar 

  224. Bortfeld, D. P., R. S. Congleton, M. Geller, R. S. Mccomas, L. D. Riley, W. R. Sooy U. M. L. Stitch: Influence of optical quality on ruby laser oscillators and amplifiers. J. Appl. Phys. 35, 7 (1964) 2267–2269.

    ADS  Google Scholar 

  225. Hercher, M.: Relationship between the near field characteristics of a ruby laser and its optical quality. Appl. Opt. 1, 5 (1962) 655–670.

    ADS  Google Scholar 

  226. Dueker, G. W., C. M. Kellington, M. Katzmann U. J. G. Auwoon: Optical properties and laser thresholds of thirty-nine ruby laser crystals. Appl. Opt. 4, 1 (1965) 109 bis 118.

    Google Scholar 

  227. Vediita, A. P., A. M. Leontovich u. V. N. SMORCIxov: Changes in the resonator of a ruby laser when heated by pumping. P. N. Lebedev Phys. Inst., Akademiya Nauk SSSR (1965) JETP 21, 1 (1965) 59–63.

    Google Scholar 

  228. Welling, H., C. J. Bicka.RT u. H. G. Andresen: Change of optical path length in laser rods within the pumping period. IEEE J. Q. E. QE-1, 5 (1965) 223–224.

    ADS  Google Scholar 

  229. Townsend, R. L., C. M. Stickley u. A. D. Mail: Thermal effects in optically pumped laser rods. Appl. Phys. Letters 7, 4 (1965) 94–96.

    ADS  Google Scholar 

  230. Welling, H. u. C. J. Bicrart: Spatial and temporal variation of the optical path length in flash pumped laser rods. J. Opt. Soc. Am. 55, 11 (1965) 1575.

    Google Scholar 

  231. Townsend, R. L., JR.: Thermally induced effects in solid state laser rods. Air Force Camb. Res. Lab. Report AFCRL 66–57 (1966) Phys. Sci. Res. papers 188.

    Google Scholar 

  232. Izatt, J. R., H. A. Daw u. R. C. Mitchell’ Variation of refractive index during laser operation. Reports on Contract Nr.-3531, 4 (1965).

    Google Scholar 

  233. Houston, T. W., L. F. Johnson, P. Kisliux u. D. J. WALsH: Temperature dependence of the refractive index of optical maser crystals. J. Opt. Soc. Am. 53, 11 (1963) 1286 bis 1291.

    Google Scholar 

  234. Lempicki, A., H. Samelson U. C. Brecher: Laser action in rare earth chelates. Appl. Opt. Suppl. 2 (1965) 205–213.

    Google Scholar 

  235. Lempicki, A., u. H. Samelson: Laser action in a solution of a europium chelate. Proc. of the Symp. on Optical Masers, New York (1963) 347–355.

    Google Scholar 

  236. Ohlmann, R. C., E. P. Riedel, R. G. Charles u. J. M. FELDMAN: Investigations of a europium chelate solution as a potential liquid optical maser. Proc. Int. Congress on Quantum Electronics, Paris Febr. 1963; Paris: Dunod 1964, 779–785.

    Google Scholar 

  237. Schimitscher, E. J., u. R. B. Nehrich, JR.: Laser action in europium dibenzoylmethide. J. Appl. Phys. 35, 9 (1964) 2786–2787.

    Google Scholar 

  238. Anonyme Publikation: Conference on organic lasers. (25. 5. 1964 ) Office of Naval Res. Washington, D. C. General Telephone and Electr. Lab. Inc. Bayside, New York.

    Google Scholar 

  239. Wolff, N. E., u. R. J. Pressley: Optical maser action in an Eu3+ containing organic matrix. Appl. Phys. Letters 2, 8 (1963) 152.

    Google Scholar 

  240. Lempicki, A., u. H. Samelson: Optical maser action in europium benzoylacetonate. Phys. Letters 4, 2 (1963) 133–135.

    ADS  Google Scholar 

  241. Huffman, E. H.: Additional observations of probable stimulated emission of a terbium ion chelate in a vinylic resin matrix. Nature 203, 4952 (1964) 1373–1374.

    ADS  Google Scholar 

  242. Huffmax, E. H.: Stimulated optical emission of a terbium ion chelate in a vinylic resin matrix. Nature 200, 4902 (1963) 158–159.

    ADS  Google Scholar 

  243. Huffman, E. H.: Stimulated optical emission of a Tb3+ chelate in a vinylie resin matrix. Phys. Letters 7, 4 (1963) 237–239.

    ADS  Google Scholar 

  244. Bhaumik, M. L., u. M. A. EL-Sated: Mechanism of energy transfer in some rare-earth chelates. Appl. Opt. Suppl. 2 (1965) 214–215.

    Google Scholar 

  245. Riedel, E. P., u. R. G. Charles: Effect of organic cations on the laser threshold of solutions of europium tetrakis benzoyltrifluoroacetonate. J. Appl. Phys. 36, 12 (1965) 3954–3955.

    Google Scholar 

  246. Schimitschek, E. J., J. A. Trias u. R B Nehrich, JR.: Stimulated emission in an europium chelate solution at room temperature. J. Appl. Phys. 36, 3 (1965) 867–868.

    ADS  Google Scholar 

  247. Samelson, H., A. Lempicki, C. BRECHER u. V. BROPHY: Room-temperature operation of a europium chelate liquid laser. Appl. Phys. Letters 5, 9 (1964) 173–174.

    ADS  Google Scholar 

  248. Schimitschek, E J, u A L Lewis: Elliptical head for liquid laser research. Rev. Sei. Instr. 35, 7 (1964) 911–912.

    ADS  Google Scholar 

  249. Lempicki, A., u. H. Samelson: Stimulated processes in organic compounds. Appl. Phys. Letters 2, 8 (1963) 159–161.

    Google Scholar 

  250. Röss, D.: Analysis of a room-temperature cw ruby laser of 10 mm resonator length: The ruby laser as a thermal lens. J. Appl. Phys. 37, 9 (1966) 3587–3594.

    Google Scholar 

  251. G1irs, K., u. H. Westermeier: Die Energiebilanz eines kontinuierlich an der Laserschwelle gepumpten Rubinlasers. Phys. Letters 23, 5 (1966) 319–320.

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gürs, K. (1969). Der optisch gepumpte Festkörperlaser. In: Kleen, W., Müller, R. (eds) Laser. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87266-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87266-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87267-9

  • Online ISBN: 978-3-642-87266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics