Skip to main content

Der Halbleiterlaser

  • Chapter
Laser

Zusammenfassung

Wie in Gas- und optisch gepumpten Festkörperlasern kann auch in bestimmten Halbleitern eine Lichtemission induziert und bei Rückkopplung der entstehenden Strahlung ein Laser realisiert werden. Die wesentlichen Unterschiede, die eine gesonderte Behandlung des Halbleiterlasers erfordern, beruhen auf der Art der Elektronenzustände. Während diese bei den anderen Lasern in der Energieskala ein Spektrum schmaler Linien darstellen, sind beim Halbleiter breite Energiebänder vorhanden. Dieser Sachverhalt führt vor allem zu einer relativ großen Breite der spontanen Emissionslinie und damit nach der Schawlow-Townes-Bedingung (vgl. Gl. 7.3/5) zu einer sehr hohen Schwellenleistung für eine optische Anregung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu den Tabellen 7.1a-c

  1. Hall, R. N., et al.: Coherent light emission from GaAs junctions. Phys. Rev. Letters 9 (1962) 366–368.

    ADS  Google Scholar 

  2. Nathan, M. I., et al.: Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Letters 1 (1962) 62–64.

    ADS  Google Scholar 

  3. Quist, T. M., et al.: Semiconductor Maser of GaAs. Appl. Phys. Letters 1 (1962) 91–92.

    ADS  Google Scholar 

  4. Burns, G., F. H. Dill, JR., u. M. I. Nathan: The effect of temperature on the properties of GaAs laser. Proc. IEEE 51 (1963) 947–948.

    Google Scholar 

  5. Engeler, W. E., u. M. Garfinkel: Temperature effects in coherent GaAs diodes. J. Appl. Phys. 34 (1963) 2746–2750.

    Google Scholar 

  6. Lamorte, M. F., T. Gondau. H. JunkerPhenomena influencing the temperature behavior of stimulated emission in GaAs p-n junctions. IEEE J. Q. E. QE-2 (1966) 9–15.

    Google Scholar 

  7. Effectof higher absorption in non-lasing GaAs diodes at 300.K. LEEE J. Q. E. QE-2 (1966) 74–76.

    Google Scholar 

  8. Engeler, W., U. M. Garfinkel. Thermal characteristics of GaAs laser junctions under high power pulsed conditions. Solid State Electron. 8 (1965) 585–604.

    ADS  Google Scholar 

  9. Keyes, R. W.: Thermal problems of the injection laser. IBM J. Res. and Dev. 9 (1965) 303–314.

    Google Scholar 

  10. Pilkuhn, M. H., u. H. S. Rupprecht: Junction heating of GaAs injection lasers during continuous operation. IBM J. Res. and Dev. 9 (1965) 400–404.

    Google Scholar 

  11. Lamorte, M. F.: Continuous operation is near for uncooled diode lasers. Electronics 39, January 10 (1966) 95–99.

    Google Scholar 

  12. Ryan, F. M., u. R. C. Miller. The effect of uniaxial strain on the threshold current and output of GaAs lasers. Appl. Phys. Letters 3 (1963) 162–163.

    ADS  Google Scholar 

  13. Miller, R C, F. M. RyanU. P. R. Emtage: Uniaxial strain effects in gallium arsenide laser diodes, in: Radiative Recombination in Semiconductors, Paris: Dunod 1964, 209–215.

    Google Scholar 

  14. Galeener, F. L., et al.: Evidence for the role of donor states in GaAs electroluminescence. Phys. Rev. Letters 10 (1963) 472–474.

    ADS  Google Scholar 

  15. Junctions. Appl. Phys. Letters 3 (1963) 47–49

    Google Scholar 

  16. Pilkuhn, M., u. H. Rupprecht: Electroluminescence and lasing action in GaAsxP1_x. J. Appl. Phys. 36 (1965) 684–688.

    ADS  Google Scholar 

  17. light emission from Ga(As1_x. Px) junctions. Appl. Phys. Letters 1 (1962) 82–83.

    Google Scholar 

  18. Teitjen, J. J., u. S. A. Ocn: Improved performance of GaAs1_xPx laser diodes. Proc. IEEE 53 (1965) 180–181.

    Google Scholar 

  19. electroluminescent diodes. Appl. Phys. Letters 4 (1964) 9–11.

    Google Scholar 

  20. Melngailis, I. A., A. J. Strauss u. R. H. Rdiker Semiconductor diode masers of (InxGa1_x)As. Proc. IEEE 51 (1963) 1154–1155.

    Google Scholar 

  21. Melngailis, I.: Maser action in InAs diodes. Appl. Phys. Letters 2 (1963) 176–178. MELNGAILIS, I., u. R. H. REDIKER: Properties of InAs lasers. J. Appl. Phys. 37 899–911.

    Google Scholar 

  22. Melngailis, I., u. R. H. Rediker. Magnetically tunable cw InAs maser. Appl. Phys. Letters 2 (1963) 202–204.

    Google Scholar 

  23. Galeener, F. L., et al.: Magnetic properties of InAs diode electroluminescence. J. Appl. Phys. 36 (1965) 1574–1579.

    ADS  Google Scholar 

  24. diodes. Appl. Phys. Letters 4 (1964) 13–15.

    Google Scholar 

  25. Weiser, K., u. R. S. Levitt: Stimulated light emission from InP. Appl. Phys Letters 2 (1963) 178–179.

    Google Scholar 

  26. Burns, G., et al.: Some properties of InP lasers. Proc. IEEE 51 (1963) 1148 bis 1149.

    Google Scholar 

  27. Melngailis, I.: Longitudinal injection-plasma laser of InSb. Appl. Phys. Letters 6. (1965) 59–60.

    ADS  Google Scholar 

  28. Phelan, R. J., et al.: Infrared InSb laser diode in high magnetic field. Appl. Phys. Letters 3 (1963) 143–145.

    ADS  Google Scholar 

  29. Benoitn La Guillaume, C., U. P. Lavallard: Laser effect in InSb. Solid State Comm. 1 (1963) 148–153.

    Google Scholar 

  30. Bernard, M.: Stimulated emission in InSb. Compt. Rend. 257 (1963) 2984.

    Google Scholar 

  31. Phelan, R. J., u. R. H. Rediker. Magnetic tuning of CW InSb diode laser. Proc. IEEE 52 (1964) 91–92.

    Google Scholar 

  32. Basov, N. G.: Semiconductor quantum generator on p-n junction in InAs1_xSbx system. Fiz. Tverdogo Tela 8 (1966) 1060–1063.

    Google Scholar 

  33. Ciripaux, C., et al.: Emission Stimulée dans l Antimoniure de Gallium, in: Radiative Recombination in Semiconductors, Paris: Dunod, 1964, 217–222.

    Google Scholar 

  34. Chipaux, C., u. R. Eymard: Etude de l’effet „laser“ dans des jonctions d’antimoniure de gallium. Phys. Status Solidi 10 (1965) 165–174.

    Google Scholar 

  35. T 31] Kukova, I. V.: Stimulated emission from GaSb diffused p-n junctions. Fiz. Tverdogo Tela 7 (1965) 3421–3422

    Google Scholar 

  36. Fiz. Tverdogo Tela 8 (1966) 1028–1034.

    Google Scholar 

  37. Butler, J. F., u. A. R. Calawa: PbS diode laser. J. Electrochem. Soc. 112 (1965) 1056 bis 1057.

    Google Scholar 

  38. Butler, J. F.: PbSe diode laser. Solid State Commun. 2 (1964) 303–304.

    ADS  Google Scholar 

  39. Butler, J. F., A. R. Calawau. R. H. Rediker. Properties of the PbSe diode laser. IEEE J. Q. E. QE-1 (1965) 4–7.

    Google Scholar 

  40. Besson, J. M., et al.: Pressure-tuned PbSe diode laser. Appl. Phys. Letters 7 (1963) 206–208.

    ADS  Google Scholar 

  41. Pratt, G. W., JR., u. J. E. Ripper: Theory of a pressure-tuned lead salt laser. J. Appl. Phys. 36 (1965) 1525–1527.

    Google Scholar 

  42. Butler, J. F., et al.: PbTe diode laser. Appl. Phys. Letters 5 (1964) 75–77.

    ADS  Google Scholar 

  43. Melnoailis, I., A. J. Straussu. R. H. Rediker. Semiconductor Diode Masers of (In,Gal_x)As. Proc. IEEE 51 (1963) 1154–1155.

    Google Scholar 

  44. Hurwitz, C. E., u. R. J. Keyes: Electron-beam pumped GaAs laser. Appl. Phys. Letters 5 (1964) 139–141.

    ADS  Google Scholar 

  45. Cusano, D. A.: Radiative recombination from GaAs directly excited by electron beams. Solid State Comm 2 (1964) 353–358.

    ADS  Google Scholar 

  46. Cusano, D. A., u. J. D. Kingsley: Laser emission from n-type GaAs excited by fast electrons. Appl. Phys. Letters 6 (1965) 91–93.

    ADS  Google Scholar 

  47. Cusano, D. A.: Identification of laser transitions in electron-beam pumped GaAs. Appl. Phys. Letters 7 (1965) 151–152.

    ADS  Google Scholar 

  48. Klein, C. A.: Laser-action threshold in electron-beam excited GaAs. Appl. Phys. Letters 7 (1965) 200–202.

    ADS  Google Scholar 

  49. Coleman, P. D., u. G. E. Bennett: Stimulated cathodoluminescence in n-type GaAs at 77°K. Proc. IEEE 53 (1965) 419–420.

    Google Scholar 

  50. Kurbatov, L. N.: Generation of coherent radiation in GaAs specimens under electronic excitation. Doklady Akad. Nauk SSSR 165 (1965) 303.

    Google Scholar 

  51. Basov, N. G., O. V. Bogdankeviciiu. B. M. Lavrusxnin. GaAs laser with fast electron excitation. Fiz. Tverdoga Tela 8 (1966) 21–33.

    Google Scholar 

  52. Casey, H. C., Jr., u. R. H. Kaiser: Room-temperature super-radiance radiation in n-type GaAs by continuous electron-beam excitation. Appl. Phys. Letters 8 (1966) 113–115.

    Google Scholar 

  53. Basov, N. G.: Quantum oscillator and amplifier investigations in Physics of Quantum Electronics, ed by P. L. Kelley et al. New York: McGraw-Hill 1966, 411–423.

    Google Scholar 

  54. Benoit Ila Guillaume, C., U. J. M. Debever: Laser effect in GaSb by electron bombardement. Compt. Rend. 259 (1964) 2200.

    Google Scholar 

  55. Basov, H. G.: Radiation in GaSe single crystals induced by excitation with fast electrons. Soy. Phys.-Doklady 10 (1965) 329–330.

    ADS  Google Scholar 

  56. Benoit La Guillaume, C., u. J. M. Debever: Laser effect in IriAs by electron bombardement. Sol. State Comm. 2 (1964) 145–147.

    Google Scholar 

  57. Benoit.La Guillaume, C., u. J. M. Debever: Effect Laser par bombardement electronique, in: Radiative Recombination, in: Semiconductors, Paris: Dunod 1964, 255 bis 257.

    Google Scholar 

  58. Benoit La Guillaume, C., u. J. M. Debever: Electron-beam excitation of semiconductor lasers, in: Physics of Quantum Electronics, ed. by P. L. Kelley et al. New York: McGraw-Hill 1966, 397–410.

    Google Scholar 

  59. Basov, N. G., u. O. V. Bogdankevich: Excitation of semiconductor lasers by a beam of fast electrons, in: Radiative Recombination in Semiconductors, Paris: Dunod 1964, 225–233.

    Google Scholar 

  60. Basov, N. G., O. V. Bogdankeviciiu. A. G. Devyatkov: Exciting a semiconductor laser with a fast electron beam. Sov. Phys.-Doklady 9 (1964)CdS laser excited by fast electrons. Soy. Phys.-JETP 20 (1965) 1067–1068.

    Google Scholar 

  61. Egorov, W. D., G. O. Mulleru. H. Weber: Zur Kantenlumineszenz von CdS bei starker Kathodenstrahlanregung. Phys. Status Solidi 12 (1965) 71–80.

    Google Scholar 

  62. Benoit La Guillaume, C., U. J. M. Debever: Laser effect in CdS by electronic bombardement Compt. Rend. 261 (1965) 5428.

    Google Scholar 

  63. Hurwitz, C. E.: Electron-beam pumped lasers of CdSe and CdS. Appl. Phys. Letters. 8 (1966) 121–124.

    ADS  Google Scholar 

  64. Nolle, E. L., et al.: Stimulated emission of CdSe in Case of electron excitation. Fiz. Tverdogo Tela 8, (1966) 286–287.

    Google Scholar 

  65. Vavilov, V. S., u. E. L. Nolle: CdTe laser with electron excitation. Soy. Phys.Doklady 10 (1965) 827–828.

    ADS  Google Scholar 

  66. Hurwitz, C. E.: Efficient visible lasers of CdSxSel_x by electron-beam excitation. Appl. Phys. Letters 8 (1966) 243–245.

    ADS  Google Scholar 

  67. Hurwitz, C. E., A. R. Calawau. R. H. Rediker. Electron beam pumped lasers of PbS, PbSe, PbTe. IEEE J. Q. E. QE-1 (1965) 102–103.

    Google Scholar 

  68. Benoit Ila Guillaume, C., u. J. M. Debever: Emission spontanée et stimulée du Tellure par bombardement electronique. Sol. State Comm. 3 (1965) 19–20.

    Google Scholar 

  69. Scjlickman, J. J., M. E. Fitzgeraldu. R. J. Kingston: Evidence of stimulated emission in ruby-pumped GaAs. Proc. IEEE 52 (1964) 1739–1740.

    Google Scholar 

  70. Basov, N. G., A. Z. GrasyukU. V. A. Katulyn: Stimulated emission in optically excited GaAs. Sov. Phys.-Doklady 10 (1965) 343–344.

    ADS  Google Scholar 

  71. Basov, N. G., et al: Generation in GaAs under two-photon optical excitation of Nd-glass laser emission. JETP Letters 1 (1965) 118–120.

    ADS  Google Scholar 

  72. BenoitA La Guillaume, C., u. J. M. Laurant: Laser effect in InAs and GaSb by optical excitation. Comp. Rend. 262 (1966) 275.

    Google Scholar 

  73. Phelan, R. J., Jr., u. R. H. Rediker. Optically pumped semiconductor laser. Appl. Phys. Letters 6 (1965) 70–71.

    Google Scholar 

  74. Phelan, R. J., Jr.: Laser emission by optical pumping of semiconductors, in: Physics of Quantum Electronics, ed. by P. L. Kelley et al. New York: McGraw-Hill 1966, 435 bis 441.

    Google Scholar 

  75. Melngailis, I.: Optically pumped InAs laser IEEE J. Q. E. QE-1 (1965) 104–105.

    Google Scholar 

  76. Koniukhov, V. K., L. A. Kolevskiiu. A. M. Prokhorov: Optical oscillation in CdS under the action of two-photon excitation by a ruby laser. Sov. Phys.-Doklady 10 (1965) 943–945.

    ADS  Google Scholar 

  77. Basov, N. G.: Laser oscillation in CdS by two-photon optical excitation by ruby laser radiation. Fiz. Tverdogo Tela 7 (1965) 3639–3640.

    Google Scholar 

  78. Melngailis, I., u. A. J. Strauss: Spontaneous and coherent photoluminescence in CdxHgl_xTe. Appl. Phys. Letters 8 (1966) 179–180.

    Google Scholar 

  79. Patel, C. K. N., et al.: Multiphotonplasma production and stimulated recombination in semiconductors. Phys. Rev. Letters 16 (1966) 971–974.

    ADS  Google Scholar 

Allgemeine Einführungen in die Halbleiterphysik und -technologie unter besonderer Berücksichtigung optischer Eigenschaften

  • Spenke, E.: Elektronische Halbleiter, 2. Auflage, Berlin: Springer 1965.

    Google Scholar 

  • Shockley, W.: Electrons and holes in semiconductors with applications to transistor electronics, New York: van Nostrand 1959.

    Google Scholar 

  • Hannay, N. B.: Semiconductors, New York: Reinhold 1959.

    Google Scholar 

  • Kittel, CH.: Introduction to solid state physics, London: Wiley 1956.

    Google Scholar 

  • Putley, E. H.: The Hall effect and related phenomena, London: Butterworths 1960.

    Google Scholar 

  • Cohen, M. L., u. T. K. Bergstresser: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zincblende structures. Phys. Rev. 141 (1966) 789–796.

    Google Scholar 

  • Blakemooje, J. S.: Semiconductor statistics, London: Pergamon Press 1962, Vol. 3.Moss, T. S.: Optical properties of semiconductors, London: Butterworths 1959.

    Google Scholar 

  • Stern, F.: Elementary theory of the optical properties of solids. in: solid state physics, Vol. 15,ed. by F. Seitz and D. Turnbull, New York: Academic Press 1963, 300–408.

    Google Scholar 

  • Mclean, T. P.: The absorption edge spectrum of semiconductors. in: Progress in semiconduc-tors 5, ed. by A. F. Gibson, London: Heywood 1960, 54–102.

    Google Scholar 

  • Willardson, R. K., u. H. W. Goering: Compound semiconductors. Vol. 1, Preparation of III—V compounds, New York: Reinhold 1962.

    Google Scholar 

  • Pilkuhn, M. H., u. H. Rupprecht: Diffusion problems related to GaAs injection lasers. Trans. Met. Soc. AIME 230 (1964) 296–299.

    Google Scholar 

  • Shortes, S. R., J. A. Kanzu. E. C. Wurst Jr.: Zinc diffusion through Si02 films. Trans. Met. Soc. Aime 230 (1964) 300–305.

    Google Scholar 

  • Madelung, O.: Physics of III—V-compounds, New York: Wiley 1964.

    Google Scholar 

  • Husum, C.: Gallium Arsenide. in: Progress in semiconductors 9, ed. by A. F. Gibson, London: Temple Press Books 1965, 135–178.

    Google Scholar 

Spezielle Literatur

  1. Redirer, R. H.: Infrared and visible. light emission from forward-biased p—n junctions’. Solid State Design, August (1963) 3–12.

    Google Scholar 

  2. Winstel, G. H.: Die Galliumarsenid-Lumineszenz-und die Laser-Diode, neue Bauelemente der Nachrichtentechnik. Intern. Elektr. Rundschau 17 (1963) 389–392.

    Google Scholar 

  3. Winstel, G.: Physikalische Grundlagen der Halbleiter-Injektions-Laser. Z. angew. Phys. 17 (1964) 10–16.

    Google Scholar 

  4. Burns, G., u. N. I. Nathan: PsN-junction lasers. Proc. IEEE 52 (1964) 770–794.

    Google Scholar 

  5. Hooge, F. N.: Injection lasers. J. Appl. Math. and Phys. (ZAMP) 16 (1965) 89–97.

    Google Scholar 

  6. Heywang, W., u. G. Winstel: Injektionslaser, Aufbau und physikalische Eigenschaften, in: Festkörperprobleme, Band IV, hrsg. von F. Sauter, Braunschweig: Vieweg 1965, 27–44.

    Google Scholar 

  7. Gremmelmaier, R., u. H. J. Henkel: Galliumarsenid-Laserdioden. Siemens-Zeitschr. 39 (1965) 438–441.

    Google Scholar 

  8. Lax, B.: Progress in semiconductor lasers’. IEEE Spectrum 2 (1965) 62–75.

    Google Scholar 

  9. Tomiyasu, K.: Laser bibliography I’. IEEE J. Q. E. QE-1 (1965) 133–156.

    Google Scholar 

  10. Tomiyasu, K.: Laser bibliography II’. IEEE J. Q. E. QE-1 (1965) 199–219.

    Google Scholar 

  11. Basov, N. G.: Halbleiterlaser. Umschau, 9 (1965) 257–261.

    Google Scholar 

  12. Gershenzon, M., u. L. A. Dasaro: Electroluminescence from pn-junctions’. Bell Lab. Rec. October (1965) 359–363.

    Google Scholar 

  13. Unger, K.: Inkohärente und kohärente Rekombinationsstrahlung in Halbleiterdioden. Fortschr. d. Phys. 13 (1965) 701–754.

    Google Scholar 

  14. Ivey, H. F.: Electroluminescence and semiconductor lasers. IEEE J. Q. E. QE-2 (1966) 713–716.

    Google Scholar 

  15. BenoitA La Guillaume, C., (Editors): Radiative recombination in semiconductors. 7 thInternational Conference on the Physics of Semiconductors. Paris: Dunod.

    Google Scholar 

  16. Stickland, A. C. (Editors): Gallium Arsenide. London, The Institute of Physics and the Physical Society, 1967, Conference Series No. 3, Proceedings of the International Symposium, Reading 1966.

    Google Scholar 

  17. Biai1d, J R, W. N. CarrU. B. S. Reed: Analysis of a GaAs-laser. Trans. Met. Soc. AIME 230 (1964) 286–290

    Google Scholar 

  18. Nathan, M. I.: Semiconductor lasers. Proc. IEEE 54 (1966) 1276–1290.

    Google Scholar 

  19. Willardson, R. K., u. A. C. Beer (Editors): Semiconductors and semimetals, Physics of III—V compounds, Vol. 2, London: Academic Press 1966.

    Google Scholar 

  20. Gershenzon, M.: Radiative recombination in the III—V compounds. in: [19] S. 289 bis 369.

    Google Scholar 

  21. Reichardt, W. E.: Elektronische Strahlungsibergänge in Halbleitern. in: Halbleiter probleme II, hrsg. von W. Schottky, Braunschweig: Vieweg 1955, 161–183.

    Google Scholar 

  22. Sauter, F., (Herausgeber): Festkörperprobleme V ( Halbleiterprobleme Band XI) Braunschweig: Vieweg 1966.

    Google Scholar 

  23. Schultz, W.: Rekombinations- und Generationsprozesse in Halbleitern. in: [23] S. 165 bis 219.

    Google Scholar 

  24. Grimmeiss, H. G.: Elektrolumineszenz in III-V-Verbindungen. in: [23] S. 221–248.

    Google Scholar 

  25. Gumlica, H. E.: Elektrolumineszenz von II-VI-Verbindungen. in: [23] S. 249–282.

    Google Scholar 

  26. Broser, I.: Exzitonen-Lumineszenz in Halbleitern. in: [23] S. 283–318.

    Google Scholar 

  27. Unger, K.: Inkohärente und kohärente Rekombinationsstrahlung in Halbleiterdioden. Fortschr. d, Phys. 13 (1965) 701–754, s. S. 710.

    Google Scholar 

  28. Watanabe Nishisawa: Halbleiter Maser. Japanische Auslegeschrift SHO 35 (1960) -13.787, bekanntgemacht 20. 9. 1960.

    Google Scholar 

  29. Heywang, W. U. a.: Installation pour la production ou l’amplification de rayonnement attres haute frequences. Französ. Patent Nr. 1 223 113, erteilt am 25. 1. 1960. Improvement in/or relating to semiconductor arragements. Engl. Patent Nr. 898411, erteilt am 26. 9. 1962.

    Google Scholar 

  30. Lax, B.: Cyclotron resonance and impurity levels in semiconductors. in: Quantum Electronics, ed. by C. H. Townes, New York: Columbia University Press 1960, 428 bis 449.

    Google Scholar 

  31. Bernard, M. G. A., u. G. Duraffourg: Possibilités de lasers à semiconducteurs. J. Phys. Radium 22 (1961) 836 und Laser conditions in semiconductors. Physica Status Solidi 1 (1961) 699–703.

    Google Scholar 

  32. Basov, N. G., O. N. Krokhinu. Y. M. Porov: Indirect interband transitions and radiation absorption by the free carriers. in: Advances in Quantum Electronics, ed. by J. R. Singer, London: Columbia University Press 1961, 500–506 (siehe auch Diskussionsbemerkung).

    Google Scholar 

  33. BenoitA La Guillaume, C., U. Mme Trio: Les semiconducteurs et leur utilisation possible dans les laser. J. Phys. Radium 22 (1961) 834–836.

    Google Scholar 

  34. Keyes, R. J. u. T. M. Quist: Recombination radiation emitted by gallium arsenide. Proc. IRE 50 (1962) 1822–1823.

    Google Scholar 

  35. Dumke, W. P.: Interband transitions and maser action. Phys. Rev. 127 (1962) 1559 bis 1563.

    Google Scholar 

  36. Hall, R. N., et al.: Coherent light emission from GaAs-junctions. Phys. Rev. Letters 9 (1962) 366–368.

    ADS  Google Scholar 

  37. Nathan, M. I., et al.: Stimulated emission of radiation from GaAs pn-junctions. Appl. Phys. Letters 1 (1962) 62–64.

    ADS  Google Scholar 

  38. Quist, T. M., et al.: Semiconductor maser of GaAs. Appl. Phys. Letters 1 (1962) 91–92.

    ADS  Google Scholar 

  39. Holonyak, N., Jr., u. S. F. Bevacqua: Coherent light emission from Ga (As1_xPx) junctions. Appl. Phys. Letters 1 (1962) 82–83.

    Google Scholar 

  40. Melngailis, I.: Maser action in InAs diodes. Appl. Phys. Letters 2 (1963) 176–178.

    ADS  Google Scholar 

  41. Weiser, K., u. R. S. Levitt: Stimulated light emission from indium phosphide. Appl. Phys. Letters 2 (1963) 178–179.

    Google Scholar 

  42. Melngailis, I., A. J. Straussu. R. H. Rediker. Semiconductor diode masers of (InxGal_x)As. Proc. IEEE 51 (1963) 1154–1155.

    Google Scholar 

  43. Alexander, F. B., et al.: Spontaneous and stimulated infra-red emission from indium phosphide arsenide diodes. Appl. Phys. Letters 4 (1964) 13–15.

    ADS  Google Scholar 

  44. Phelan, R. J., et al.: Infrared InSb-laser diode in high magnetic fields. Appl. Phys. Letters 3 (1963) 143–145.

    ADS  Google Scholar 

  45. Stevenson, M. J., J. D. Axeu. J. R. Lankard: Line widths and pressure shifts in mode structure of stimulated emission from GaAs junctions. IBM J. Res. Dev. 7 (1963) 155–156.

    Google Scholar 

  46. Meyerhofer, D., u. R. Braunstein: Frequency tuning of GaAs laser diode by uniaxial stress. Appl. Phys. Letters 3 (1963) 171–172.

    Google Scholar 

  47. Burns, G., u. M. I. Nathan: Room-temperature stimulated emission. IBM J. Res. Dev. 7 (1963) 72–73.

    Google Scholar 

  48. Butler, J. F., et al.: PbTe diode laser. Appl. Phys. Letters 5 (1964) 75–77.

    ADS  Google Scholar 

  49. Butler, J. F., et al.: PbSe diode laser. Solid State Comm. 2 (1964) 303–304.

    ADS  Google Scholar 

  50. Butler, J. F., u. A. R. Calawa: PbS diode laser. J. el. chem. Soc. 112 (1965) 1056 bis 1057.

    Google Scholar 

  51. Basov, N. G., u. O. V. Bogdankevich: Excitation of semiconductor lasers by a beam of fast electrons. in: [15] S. 225–233.

    Google Scholar 

  52. BenoitA La Guillaume, C., u. J. M. Debever: Effet laser par bombardement electronique. in: [15] S. 255–257.

    Google Scholar 

  53. Hurwitz, C. E., u. R. J. Keyes: Electron-beam-pumped GaAs laser. Appl. Phys. Letters 5 (1964) 139–141.

    ADS  Google Scholar 

  54. a) Cusano, D. A.: Radiative recombination from GaAs directly excited by electron beams. Solid State Comm 2 (1964) 353–358.

    Google Scholar 

  55. b) Cusano, D. A., G. E. Fenner u. R. O. Carlson: Recombination scheme and intrinsic gap variation in GaAs, _ xPx semiconductors from electron beam and pn-diode excitation. Appl. Phys. Letters 5 (1964) 144–146.

    Google Scholar 

  56. Klein, C. A.: Threshold considerations for electron-beam pumped GaAs lasers. Bull. Am. Phys. Soc. 10 (1965) 387–388.

    Google Scholar 

  57. Hora, H.: Calculations of laser excitation in a GaAs anode by slow electrons. Z. Naturf. 20a (1965) 543–548.

    ADS  Google Scholar 

  58. Kogelnik, H., u. W. W. Rigrod: Visual display of isolated optical-resonator modes. Proc. IRE 50 (1962) 220.

    Google Scholar 

  59. BenoitA La Guillaume, C., u. J. M. Debever: Emission spontanée et stimulée du tellure par bombardement electronique. Solid State Comm. 3 (1965) 19–20.

    ADS  Google Scholar 

  60. Hurwitz, C. E., A.R. Calawau. R. H. Rediker. Electron beam pumped lasers of PSb, PbSe, and PbTe. IEEE J. Q. E. QE-1, (1965) 102–103.

    Google Scholar 

  61. Weiser, K., u. J. F. Woons: Evidence for avalanche injection laser in p-type GaAs. Appl. Phys. Letters 7 (1965) 225–228.

    ADS  Google Scholar 

  62. Basov, N. G., O. N. Krokhinu Y M Porov: Generation, amplification and detection of infrared and optical radiation by quantum-mechanical systems. Soviet Phys. Uspekhi 3 (1960) 702.

    Google Scholar 

  63. Phelan, R. J., JR., u. R. H. Rediker. Optically pumped semiconductor laser. Appl. Phys. Letters 6 (1965) 70–71.

    Google Scholar 

  64. Melngailis, I.: Optically pumped indiumarsenide laser. IEEE J. Quant. Electr. QE-1 (1965) 104–105.

    Google Scholar 

  65. Kelly, C. E.: Interactions between closely coupled GaAs injection lasers. IEEE Trans. Electr. Devices ED-12 (1965) 1–4.

    Google Scholar 

  66. a) Bagaev, V. S., et al.: About the energy spectrum of the heavily doped GaAs. in: [15] S. 149–154.

    Google Scholar 

  67. b) Halperin, B. I., u. M. Lax: Impurity band tails in the high density limit. Phys. Rev. 148 (1966) 722–740.

    Google Scholar 

  68. Spenke, E.: Elektronische Halbleiter. 2. Aufl Berlin: Springer 1965, 594.

    Google Scholar 

  69. Pokrovskii, Y. E., u. K. I. Svistunova: Impurity recombination radiation of diodes made of indium-doped n-typ silicon. Sov. Phys. Sol. State 7 (1965) 1275–1276.

    Google Scholar 

  70. Cusano, D. A.: siehe [55 b].

    Google Scholar 

  71. Larsen, T. L., E. E. Loebneru. R. J. Archer: Relativ strength of direct and indirect radiative transitions in GaAsi_xPx alloys. Bull. Am. Phys. Soc. 10 (1965) 388.

    Google Scholar 

  72. Hall, R. N.: Recombination processes in semiconductors. Proc. IRE 106 B Suppl. 17 (1960) 923–931.

    Google Scholar 

  73. a) Dumke, W. P.: Spontaneous radiative recombination in semiconductors. Phys. Rev. 105 (1957) 139–144.

    Google Scholar 

  74. b) Dumke, W. P.: Optical transitions involving impurities in semiconductors. Phys. Rev. 132 (1963) 1998–2002.

    Google Scholar 

  75. c) Lasher, G., u. F. Stern: Spontaneous and stimulated recombination radiation in semiconductorsi. Phys. Rev. 133 (1964) A553 — A563.

    Google Scholar 

  76. d) Zeiger, H. J.: Impurity states in semiconducting masers. J. Appl. Phys. 35 (1964) 1657–1667.

    Google Scholar 

  77. Krokhin, O. N., u. Y. M. Popov: Slowing-down time of nonequilibrium current carriers in semiconductors. Sov. Phys. JETP 11 (1960) 1144–1146.

    Google Scholar 

  78. a) Haken, E., u. H. Haken: Zur Theorie des Halbleiterlaser. Z. Phys. 176 (1963) 421 bis 428.

    Google Scholar 

  79. b) Hall, R. N.: Coherent light emission from pn-junctions. Solid State Electronics 6 (1965) 405–416.

    Google Scholar 

  80. Lasher, G., u. F. Stern: siehe [72c].

    Google Scholar 

  81. Stern, F.: Effect of band tails on stimulated emission of light in semiconductors. Phys. Rev. 148 (1966) 186–194.

    ADS  Google Scholar 

  82. Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93 (1954) 632 bis 633.

    Google Scholar 

  83. Bonch-Bruevich, V. L., u. R. Rozman: On the theory of the absorption of light in heavily doped semiconductors. Soy. Phys. Sol. St. 6 (1965) 2016–2017.

    Google Scholar 

  84. Kane, E. O.: Thomas-Fermi approach to impure semiconductor band structure. Phys. Rev. 131 (1963) 79–88.

    ADS  MATH  Google Scholar 

  85. a) Cusano, D. A.: siehe [55a].

    Google Scholar 

  86. b) Casey, H. C., u. R. H. Kaiser: Analysis of n-type GaAs with electron-beam excited radiation recombination. J. El. Chem. Soc. 114 (1967) 1149–1153.

    Google Scholar 

  87. Ruprecht, II.: in [16] S. 57–61.

    Google Scholar 

  88. a) Zschauer, K.-H.: Properties of luminescent GaAs pn-junctions with alloyed p-region. Solid State Comm. 5 (1967) 123–126.

    ADS  Google Scholar 

  89. b) Mettler, K.: Optical properties of GaAs alloyed pn-junctions. Solid State Comm. 5 (1967) 127–130.

    Google Scholar 

  90. Mclean, T. P.: The absorption edge spectrum of semiconductors. in: Progress in Semiconductors, Vol. 5, ed. by A. F. Gibson, London: Heywood 1960, 60–63.

    Google Scholar 

  91. a) Hill, D. E.: Infrared transmission and fluorescence of doped gallium arsenide. Phys. Rev. 133 (1964) A866 - A872.

    Google Scholar 

  92. b) Braunstein, R., J. I. Pankoveu. H. Nelson: Effect of doping on the emission peak and the absorption edge of GaAs. Appl. Phys. Letters 3 (1963) 31–33.

    Google Scholar 

  93. Lucovsky, G.: Absorption edge measurements in compensated GaAs. Appl. Phys. Letters 5 (1964) 37–39.

    ADS  Google Scholar 

  94. Allen, J. W., u. R. Cherry: Space-charge currents in gallium arsenide. Nature 189 (1961) 297–298.

    ADS  Google Scholar 

  95. Unger, K.: siehe [28].

    Google Scholar 

  96. Weiser, K. u. J. F. Woods: siehe [61].

    Google Scholar 

  97. a) Wade, G., C. A. WheelevU. R. G. Hunsperger: Inherent properties of a tunnel-injection laser. (Proc. IEEE 53 (1965) 98–99.

    Google Scholar 

  98. b) Berglund, C. N.: Electroluminescence using GaAs MIS-structures Appl. Phys. Letters 9 (1966) 441–443.

    ADS  Google Scholar 

  99. Pilkuhn, M. H., u. H. Rupprecht: siehe [99].

    Google Scholar 

  100. Scott, A. C.: Single mode differential efficiency for circular and rectangular laser diodes. Proc. IEEE 53 (1965) 315–316.

    Google Scholar 

  101. Horak, G.: Untersuchung an GaAs-Laserdioden mit Dreieck-Resonator. Z. angew. Math. Phys. 16 (1965) 556–559.

    Google Scholar 

  102. a) Mcwhorter, A. L.: Electromagnetic theory of the semiconductor junction laser. Solid State Electronics 6 (1963) 417–423.

    ADS  Google Scholar 

  103. b) Anderson, W. W.: Mode confinement and gain in injection lasers. IEEE J. Q. E. QE-1 (1965) 228–236.

    Google Scholar 

  104. c) Yariv, A., u. R. C. C. Leite: Dielectric-wave-guide mode of light propagation in pn-junctions. Appl. Phys. Letters 2 (1963) 55–57.

    Google Scholar 

  105. d) Bond, W. L., et al.: Observation of the dielectric-waveguide mode of light propagation in pn-;,unctions. Appl. Phys. Letters 2 (1963) 57–59.

    ADS  Google Scholar 

  106. e) Leite, R. C. C., u. A. Yariv: On mode confinement in pn-junctions. Proc. IEEE 51 (1963) 1035–1036.

    Google Scholar 

  107. f) Diemer, G., u. B. Bolger: Proposal for reduction of diffraction lasers in pn-lasers. Physica 29 (1963) 600–601.

    Google Scholar 

  108. a) Visvanathan, S.: Free carrier absorption arising from impurities in semiconductors. Phys. Rev. 120 (1960) 379–380.

    ADS  Google Scholar 

  109. b) Visvanathan, S.: Free carrier absorption due to polar modes in the III-V compound semiconductors. Phys. Rev. 120 (1960) 376–378.

    Google Scholar 

  110. C) Ryvkin, S. M., A. A. Grinbergu. N. I. Kramer: Indirect optical transitions in semiconductors involving carrier interaction. Soy. Phys. Sol. State 7 (1966) 1766–1773.

    Google Scholar 

  111. Btjrrell, G. J., T. S. Moss u. A. Hetherington: Transverse gain in GaAs-laser structures. Phys. Stat. Sol. 14 (1966) 109–113.

    ADS  Google Scholar 

  112. a) Stern, F.: Transmission of isotropic radiation across an interface between two dielectrics. Appl. Optics 3 (1964) 111–113.

    ADS  Google Scholar 

  113. b) Pilkuhn, M., H. Rupprechtu. J. Woodall: Continuous stimulated emission from GaAs diodes at 77°K. Proc. IEEE 51 (1963) 1243.

    Google Scholar 

  114. a) Burns, G., u. M. 1. Nathanpn-junction lasers. Proc. IEEE 52 (1964) 770–794. b) siehe [93e].

    Google Scholar 

  115. Stern, F.: Radiation confinement in semiconductor lasers. in [15] S. 165–170.

    Google Scholar 

  116. Pilkuijn, M. H., u. H. Rupprecht: Optical and electrical properties of epitaxial and diffused GaAs injection lasers. J. Appl. Phys. 38 (1967) 5–10.

    Google Scholar 

  117. Antonoff, M. M.: Angular distribution of radiation from GaAs-injection lasers. J. Appl. Phys. 35 (1964) 3623–3624.

    ADS  Google Scholar 

  118. Fenner, G. E., u. J. D. Kingsley: Spatial distribution of radiation from GaAs-lasers. J. Appl. Phys. 34 (1963) 3204–3208.

    Google Scholar 

  119. Henkel, H. J., E. Kleinu. H. Kuckuck: Das Verhalten von GaAs-Laserdioden bei hohen Strahlungsleistungen. Solid State Electronics 8 (1965) 475–478.

    ADS  Google Scholar 

  120. Michel, A. E., u. E. J. Walker: Interference between the infrared beams from opposite ends of a GaAs-laser. J. Appl. Phys. 34 (1963) 2492–2493.

    Google Scholar 

  121. Sorokin, P. P., J. D. Axeu. J. R. Lankard: Spectral characteristics of GaAs-lasers operating in Fabry-Perot modes. J. Appl. Phys. 34 (1963) 2553–2556.

    ADS  Google Scholar 

  122. Armstrong, J. A. u. A. W. Smith: Interferometric measurement of line width and noise in GaAs lasers. Appl. Phys. Letters 4 (1964) 196–198.

    ADS  Google Scholar 

  123. a) Wilson, D. K.: Mode control in pn-junction lasers, in [15] S. 171–176.

    Google Scholar 

  124. b) Weiser, K., u. A. E. Michel: Gallium Arsenide lasers with P-P°-N-structure. in: [15] S. 177–182.

    Google Scholar 

  125. Nathan, N. I., G. Burnsu. A. B. Fowler: Dispersion and loss in GaAs injection lasers. in: [15] S. 205–208.

    Google Scholar 

  126. a) Engeler, W. E., u. M. Garfinkel: Temperature effects in coherent GaAs diodes. J. Appl. Phys. 34 (1963) 2746–2750.

    Google Scholar 

  127. b) Gooch, C. H.: Transient thermal effects in gallium arsenide injection lasers. Phys. Letters 16 (1965) 5–6.

    Google Scholar 

  128. c) Konnerth, K.: Junction heating in GaAs injection lasers. Proc. IEEE 53 (1965) 397–398.

    Google Scholar 

  129. a) Spatz, H., C. L. Tangu. J. M. Lavine: Spectral output of semiconductor lasers. J. Appl. Phys. 35 (1964) 2581–2585.

    ADS  Google Scholar 

  130. b) Lavine, J. M., u. A. A. Iannini: Temperature dependence of the multimode behavior of GaAs-lasers. J. Appl. Phys. 36 (1965) 402–405.

    Google Scholar 

  131. a) Konnerth, K., u. C. Lanza: Delay between current pulse and light emission of a gallium arsenide injection laser. Appl. Phys. Letters 4 (1964) 120–121.

    Google Scholar 

  132. b) Goldstein, B. S., u. J. D. Welch: Microwave modulation of a GaAs-injection laser. Proc. IEEE 52 (1964) 715.

    Google Scholar 

  133. Winogradoff, N. N., u. H. K. Kessler: Light emission and electrical characteristics of epitaxial GaAs-lasers and tunnel Diodes. Solid State Commun. 2 (1964) 119 bis 122.

    Google Scholar 

  134. Winstel, G., u. K. Mettler: Zur Trägerrekombination in einem GaAs-Injektionslaser. in: [15] S. 183–193.

    Google Scholar 

  135. Fulton, T. A., D. B. Fitchenu. G. E. Fenner: Pressure effects in Ga(Asl,Pa)electroluminescent diodes. Appl. Phys. Letters 4 (1964) 9–11.

    Google Scholar 

  136. Ryan, F. M., u. R. C. Miller: The effect of uniaxial strain on the threshold current and output of GaAs-lasers. Appl. Phys. Letters 3 (1963) 162–163.

    ADS  Google Scholar 

  137. a) Miller, R. C., F. M. RyanU. P. R. Emtage: Uniaxial strain effects in gallium arsenide laser diodes. in: [15] S. 209–215.

    Google Scholar 

  138. b) Meyerhofer, D., U. R. Braunstein: Frequency tuning of GaAs-laser diode by uniaxial stress. Appl. Phys. Letters 3 (1963) 171–172.

    Google Scholar 

  139. c) Durrett, R. H., et al.: Uniaxial pressure wavelength changes in GaAs lasers in cw operation. Proc. IEEE 53, (1965), 2121–2122.

    Google Scholar 

  140. Phelan, R. J., et al.: Infrared InSb-laser diode in high magnetic fields. Appl. Phys. Letters 3 (1963) 143–145.

    ADS  Google Scholar 

  141. a) Marinace, J. C.: Diffused junctions in GaAs injection lasers. J. Electrochem. Soc. 110 (1963) 1153–1159.

    Google Scholar 

  142. b) Pilxuhn, M. H., u. H. Rupprecht: Diffusion problems related to GaAs injection lasers. Trans AIME 230 (1964) 296–300.

    Google Scholar 

  143. Kelly, C. E.: Donor-diffused galliumarsenid-injection lasers, Proc. IEEE 51 (1963) 1239–1240.

    Google Scholar 

  144. a) Nelson, H.: Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes. RCA Review 24 (1963) 603–615.

    Google Scholar 

  145. b)Melngailis, I.: Longitudinal injection-plasma laser of InSb. Appl. Phys. Letters 6 (1965) 59–60.

    ADS  Google Scholar 

  146. c) Lorenz, M. R., u. M. H. Pilkuhn: Preparation and properties of solution-grown epitaxial pn-junctions in GaP. J. Appl. Phys. 37 (1966) 4094–4102.

    Google Scholar 

  147. a) Rupprecht, H.: New aspects of solution regrowth in the device technology of gallium arsenide. in: [16] S. 57–61.

    Google Scholar 

  148. b) Cayman, G.: Laser action in an alloyed GaAs-junction. Solid State Electronics 8 (1965) 455–456.

    ADS  Google Scholar 

  149. a) Effer, D.: Epitaxial growth of doped and pure GaAs in an open flow system. J. Electrochem. Soc. 112 (1965) 1020–1025.

    Google Scholar 

  150. b) MehalE. W., R. W. Haistyu. D. W. Shaw: GaAs Epitaxial technology for integrated circuits. Trans. Met. Soc AIME 236 (1966) 263–267.

    Google Scholar 

  151. e) Eddolls, D. V., J. R. Knightu. B. L. H. Wilson: The preparation and properties of epitaxial gallium arsenide. in: [16] S. 3–9.

    Google Scholar 

  152. Shaw, D. W., et al.: Gallium arsenide, epitaxial technology. in: [16] S. 10–15.

    Google Scholar 

  153. Bolger, D. E., et al.: Preparation and characteristics of gallium arsenide. in: [16] S.16–22.

    Google Scholar 

  154. Joyce, B. D., u. J. B. Mullin. Pyramid formation in epitaxial gallium arsenide. in: [16] S. 23–26.

    Google Scholar 

  155. Williams, F V. Structural defects in epitaxial gallium arsenide. in: [16] S. 27–30.

    Google Scholar 

  156. Jonscher, A. K., u. M. H. Boyle: The flow of carriers and its effects on the spatial distribution of radiation from injection lasers. in: [16] S. 78–84.

    Google Scholar 

  157. Ziegler, G., u. H.-J. Henkel: Inhomogene Störstellenverteilung in GaAs-Einkristallen. Z. angew. Phys. 19 (1965) 401–404.

    Google Scholar 

  158. a) Casey, H. C., Jr., u. R. H. Kaiser: Analysis of N-type GaAs with electron-beam excited radiative recombination. J. Electrochem. Soc. 114 (1967) 149–153.

    Google Scholar 

  159. b) Casey, H. C., Jr.: Investigation of inhomogeneities in GaAs by electron-beam excitation. J. Electrochem. Soc. 114 (1967) 153–158.

    Google Scholar 

  160. a) Engeler, W., U. M. Garfinkel. Thermal characteristics of GaAs-laser junctions under high power pulsed conditions. Solid State Electronics 8 (1965) 585–604.

    Google Scholar 

  161. b) Mayburg, S.: Temperature limitationon continuous operation of GaAs lasers. J. Appl. Phys. 34 (1963) 3417–3418.

    ADS  Google Scholar 

  162. c) Quine, J. P., K. Tomiyasuu. C. Younger: Pulse modulation of gallium arsenide injection luminescent diode laser. Proc. IEEE 51 (1963) 1141–1142.

    Google Scholar 

  163. d) Keyes, R. W.: Thermal problems of the injection laser. IBM J. R. s. Dev. 9 (1965) 303–314.

    Google Scholar 

  164. e) Lasher, G. J., u. M. V. Smith: Thermal limitations on the energy of a single injection laser light pulse. IBM J. Res. Dev. 8 (1964) 532–536.

    Google Scholar 

  165. f) Lamorte, M. F., R. B. Liebertu. T. Gonda: CW-Operation of GaAs injection lasers. Proc. IEEE, 52 (1964) 1257–1258.

    Google Scholar 

  166. Marinace, J. C.: High power cw operation of GaAs junction lasers at 77 °K. IBM J. Res. Dev. 8 (1964) 543–544.

    Google Scholar 

  167. a) Engeler, W. E.: Characteristics of a continuous high-power GaAs-junction laser. J. Appl. Phys. 35 (1964) 1734–1741.

    Google Scholar 

  168. b) Salow, H., u. K.-W. Benz: Der Aufbau von GaAs-Injektionslasern für den kontinuierlichen Betrieb bei der Temperatur des flüssigen N2. Z. angew. Phys. 19 (1965) 157–161.

    Google Scholar 

  169. c) Goldstein, B. S., u. J. D. Welch: siehe [110b].

    Google Scholar 

  170. Lindner, F. W.: Über das spektrale Emissionsverhalten von Nanosekunden gepulsten GaAs-Laserdioden. Phys. Letters 241 (1967) 409–411.

    ADS  Google Scholar 

  171. Gallagher, C. C., et al.: Output power from GaAs lasers at room temperature. Proc. IEEE 52 (1964) 717–719.

    Google Scholar 

  172. Burns, G., u. M. I. Nathan: Room-temperature stimulated emission. IBM J. Res. Dev. 7 (1963) 72–75.

    Google Scholar 

  173. Nelson, H., et al.: High-efficiency injection laser at room temperature. Proc. IEEE 52 (1964) 1360–1361.

    Google Scholar 

  174. Pilkuhn, M., H. RupprechtR. J. Woodall: Continuous stimulated emission from GaAs diodes at 77°K. Proc. IEEE 51 (1963) 1243.

    Google Scholar 

  175. Crowe, J. W., u. R. M. Craig: Laser array fabrication techniques. 1967 International Circuits Conference Report, Philadelphia, USA, S. 94–95.

    Google Scholar 

  176. Dyment, J. C.: Hermite-Gaussian mode patterns in GaAs junction lasers. Appl. Phys. Letters 10 (1967) 84–88.

    ADS  Google Scholar 

  177. Akselrad, A. Optimum design for a room-temperature, puls-operated GaAs injection laser. Appl. Phys. Letters 8 (1966) 250–252.

    ADS  Google Scholar 

  178. Kessler, H. K.: Optical power increase in GaAs laser diodes coated with reflecting aluminium silicone mixture. Proc. IEEE 55 (1967) 99–100.

    Google Scholar 

  179. Basov, N. G., u. O. V. Bogdankevich: Excitation of semiconductor lasers by a beam of fast electrons. in: [15] S. 225–233.

    Google Scholar 

  180. Klein, C. A.: Laser-action threshold in electron-beam excited gallium arsenide. Appl. Phys. Letters 7 (1965) 200–202.

    ADS  Google Scholar 

  181. Hurwitz, C. E., u. R. J. Keyes: Electron-beam-pumped GaAs laser. Appl. Phys. Letters 5 (1964) 139–141.

    ADS  Google Scholar 

  182. Cusano, D. A.: Radiative recombination from GaAs directly excited by electron beams. Solid State Comm 2 (1964) 353.

    ADS  Google Scholar 

  183. Cusano, D. A.: Identification of laser transitions in electron-beam-pumped GaAs. Appl. Phys. Letters 7 (1965) 151–152.

    ADS  Google Scholar 

  184. Bernstein, L., u. R. J. Beals. Thermal expension and related bonding problems of some III—V compound semiconductors. J. Appl. Phys. 32 (1961) 122–123.

    Google Scholar 

  185. Zschauer, K.-H.: Possible mechanism of Auger-Recombination in Gallium arsenide. Zur Veröffentlichung vorgesehen.

    Google Scholar 

  186. Dyment, J. C. and L. A. Dasaro: Continuous operation of GaAs junction lasers on diamond heat sinks at 200°K. Appl. Phys. Lett. 11 (1967) 292–294.

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winstel, G.H. (1969). Der Halbleiterlaser. In: Kleen, W., Müller, R. (eds) Laser. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87266-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87266-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87267-9

  • Online ISBN: 978-3-642-87266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics