Skip to main content

Modulationsverfahren

  • Chapter
Laser

Zusammenfassung

Aus den vorangegangenen Beschreibungen ist ersichtlich, daß Laser Lichtgeneratoren sind, die in gewissen wesentlichen Eigenschaften den bekannten Hochfrequenzgeneratoren gleichen. Dies bestimmt weitgehend die zu erwartenden zukünftigen Anwendungen (s. Kap. 10). Ein wichtiges Anwendungsgebiet kann die Nachrichtentechnik im allgemeinen Sinn (Nachrichtenübertragung, Datenverarbeitung und Ortung) werden. Dazu ist es erforderlich, den Träger, d.h. das Licht mit der gewünschten Nachricht (sei dies auch nur ein Pulszug, wie z. B. bei Ortungssystemen) zu modulieren. Vom nachrichtentechnischen Standpunkt läßt besonders die sehr hohe Trägerfrequenz von einigen 1014 Hz das Licht als Träger für Breitbandübertragungen besonders geeignet erscheinen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Zwicker, P., u. P. Scaerrer: Elektrooptische Eigenschaften der seignette elektrischen Kristalle KH2PO4 and KD2PO4. Hely. Phys. Acta 17 (1944) S. 346.

    Google Scholar 

  2. Beck, M., u. H. Gränicher: Elektrooptische Untersuchungen an Kristallen der KH2PO4Gruppe. Rely. Phys. Acta 23 (1950) 522.

    Google Scholar 

  3. Pockels, F.: Lehrbuch der Kristalloptik. Leipzig/Berlin: Teubner 1906.

    MATH  Google Scholar 

  4. Landau, L. D., u. E. M. LIFSCHITZ: Electrodynamics of continuous media, Oxford/ London/New York/Paris: Pergamon Press 1960 S. 320.

    Google Scholar 

  5. Carpenter, R. O’B.: J. Opt. Soc. Am. 40 (1950) 225.

    Article  ADS  Google Scholar 

  6. Kaminov, J. P.: Microwave modulation of the electrooptic effect in KFI2PO4. Phys. Rev. Letters 6 (1961) 528–530.

    Article  ADS  Google Scholar 

  7. Blumenthal, R. H.: Design of a microwave-frequency light modulator. Proc. IRE 50 (1962) 452–456.

    Article  Google Scholar 

  8. Kanziu, W.: Ferroelectrics and antiferroelectrics. Sol. State Physics 4 (1957), cd. by F. Seitz, D. Turnbull, New York/London: Academic Press, S. 5–197.

    Google Scholar 

  9. Burro, R.: On the isotopic effects in the ferroelectric behaviour of crystals with short hydrogen bonds. J. Phys. Chem. Solids 13 (1960) 204–211.

    Article  ADS  Google Scholar 

  10. Johnson, K. M.: Solid-state modulation and direct demodulation of gas laser light at a microwave Frequency. Proc. IEEE 51 (1963) 1368–1369.

    Article  Google Scholar 

  11. Buhrer, C. F.: Optical modulation by light bunching. Proc. IEEE 51 (1963) 1151.

    Google Scholar 

  12. Bohrer, C. F., V. Fowler u. L. R. Bloom: Single-sideband suppressed carrier modulation of coherent light beams. Proc. IRE 50 (1962) 1827–1828.

    Google Scholar 

  13. Buhrer, C. F.: Single sideband microwave light modulation. Proc. IEEE 52 (1964) 969–970.

    Article  Google Scholar 

  14. Kerr, J. R.: Wide-band optical frequency translation. Proc. IEEE 53 (1965) 496–497.

    Article  Google Scholar 

  15. Peters, C. J.: Optical frequency translator using two phase modulators in tandem. Appl. Opt. 4 (1965) 857–861.

    Article  ADS  Google Scholar 

  16. Shurcliff, W. A.: Polarized light, Cambridge/Mass.: Harvard Univers. Press 1962.

    Google Scholar 

  17. Bohrer, C. F., D. BAIRD u. E. M. CONWELL: Optical frequency shifting by electrooptic effect. Appl. Phys. Letters 1 (1962) 46–49.

    Article  ADS  Google Scholar 

  18. Klemas Vytautas: Frequenzmodulation and optischer Überlagerungsempfang von Laserstrahlen. Dissertation TH Braunschweig 1965.

    Google Scholar 

  19. Tien, P. K.: Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys. 29 (1958) 1347.

    Google Scholar 

  20. Rigrod, W. W., U. I. P. KAMINOw: Wide-band microwave light modulation. Proc. IEEE 51 (1963) 137–140.

    Article  Google Scholar 

  21. White, R. M., u. C. E. ENDERBY: Electro-optical modulators employing „intermittent interaction“. Proc. IEEE 51 (1963) 214.

    Article  Google Scholar 

  22. Kaminow, I. P., u. J. Lru: Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators. Proc. IEEE 51 (1963) 132–136.

    Article  Google Scholar 

  23. Peters, C. J.: Gigacicle bandwidth coherent light traveling-wave phase modulator. Proc. IEEE 51 (1963) 147–153 and 910.

    Google Scholar 

  24. Didomenico, M. JR., U. L. K. ANDERSON: Broadband electro-ptic traveling-wave light modulators. Bell. Syst. Techn. J. 42 (1963) 2621–2678.

    Google Scholar 

  25. Stone, S. M.: A microwave electrooptic modulator which overcomes transit time limitation. Proc. IEEE 52 (1964) 409–410.

    Article  Google Scholar 

  26. Johnson, K. M., u. D. D. Eden: Solid state modulation and demodulation of light with information from five television channels simultaneously. Proc. IEEE 53 (1965) 402–403.

    Article  Google Scholar 

  27. Myers, R. A., u. P. S. Pershan: Light modulation experiments at 16 Gc/sec. J. Appl. Phvs. 36 (1965) 22–28.

    Article  ADS  Google Scholar 

  28. Gordon, E. I., u. J. D. Rrgden: The Fabry-Perot electrooptic modulator. Bell. Syst. Techn. 1. 42 (1963) 155–179.

    Google Scholar 

  29. Jenkins, F. A., u. H. E. White: Fundamentals of Optics, New York: McGraw-Hill 1957, 273.

    Google Scholar 

  30. DE Angelis, X., U. W. Niblack: Electrooptic interference filter light modulator. Proc. IEEE 51 (1963) 1258.

    Google Scholar 

  31. Lasert. v. camera. Electronics 38 (1965) No. 24, 29–30.

    Google Scholar 

  32. Chen, F. S., J. E. Geusik et al.: Light modulation and beam deflection with potassium Tantalate—Niobate crystals. J. Appl. Phys. 37 (1966) 388–398.

    Article  ADS  Google Scholar 

  33. Skinner, J. G.: Comment on light beam deflectors. Appl. Opt. 3 (1964) 1504.

    Google Scholar 

  34. Fowler, V. J., C. F. Bunrer u. L. R. BLOoM: Electrooptic light beam deflector. Proc. IEEE 52 (1964) 193–194.

    Article  Google Scholar 

  35. Korpel, A.: Phased array type scanning of a laser beam. Proc. IEEE 53 (1965) 1666 bis 1667.

    Google Scholar 

  36. gratings for light beam modulation and deflection. IEEE J. Q. E. QE-1 (1965) 191–198.

    Google Scholar 

  37. Nelson, T. J.: Digital light deflection. Bell. Syst. Techn. J. 43 (1964) 821–845.

    MATH  Google Scholar 

  38. Lipnick, R., A. Reich u. G. A. Schoen: Nonmechanical scanning of light in one and two dimensions. Proc. IEEE 53 (1965) 321.

    Article  Google Scholar 

  39. Soref, R. A., u. D. H. McMAnoN: Bright hopes for display systems: flat panels and light deflectors. Electronics 38 (1965) 24, 56–62.

    Google Scholar 

  40. Skinner, J. G.: Increasing the memory capacity of the digital light deflector by „color colding“. Bell Syst. Techn. J. XLV (1966) 597–608.

    Google Scholar 

  41. Gordon, E. I.: Figure of merit for acusto-optical deflection and modulation devices. IEEE J. Q. E. QE 2 (1966) 104–105.

    Article  ADS  Google Scholar 

  42. Bucx, W. E., u. T. E. HOLLAND• Optical beam deflector. Appl. Phys. Letters 8 (1966) 198 —199.

    Google Scholar 

  43. Liu, S. G., u. W. L. Walters: Optical beam deflection by pulsed temperature gradients in bulk GaAs. Proc. IEEE 53 (1965) 522–523.

    Article  Google Scholar 

  44. Geusik, J. E., S. K. Kurtz et al.: Electrooptic properties of some ABO3 perovskites in the paraelectric phase. Appl. Phys. Letters 4 (1964) 141–143.

    Article  ADS  Google Scholar 

  45. Landolt-BÖRNSTEIN: Zahlenwerte and Funktionen aus Physik, Chemie, Astronomie, Geophysik and Technik, Bd. 2, Teil 8, Optische Konstanten, Berlin/Göttingen/Heidelberg: Springer 1962, 3–551.

    Google Scholar 

  46. Franz, W.: Einfluß eines elektrischen Feldes auf eine optische Absorptionskante. Z. Naturf. 13a (1958) 484.

    ADS  MATH  Google Scholar 

  47. Keldysh, L. V.: Influence of the lattice vibrations of a crystal on the production of electron-hole pairs in a strong electrical field. Soviet Phys. JETP 34 (1958) 665.

    Google Scholar 

  48. Frova, A., u. P. Handler: Shift of optical absorption edge by an electric field: modulation of light in the space charge region of a Ge p—n junction. Appl. Phys. Letters 5 (1964) 11–13.

    Article  ADS  Google Scholar 

  49. Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Review 93 (1954) 632.

    Article  ADS  Google Scholar 

  50. Gürs, K.: Innere Modulation von optischen Masern. Z. Physik 172 (1963) 163–171.

    Article  ADS  Google Scholar 

  51. Harris, S. E., u. O. P. McDuFF: FM laser oscillation-theory. Appl. Phys. Letters 5 (1964) 205–206.

    Article  ADS  Google Scholar 

  52. Yariv, A.: Internal modulation in multimode laser Oscillators. J. Appl. Phys. 36 (1965) 388–391.

    Article  ADS  Google Scholar 

  53. Crowell, M. H.: Characteristics of mode-coupled lasers. IEEE J. Q. E. QE 1 (1965) 12–20.

    Article  ADS  Google Scholar 

  54. Hargrove, L. E., R. L. Fork U. M. A. Pollack: Locking of He-Ne laser modes induced by Synchronous Intracavity Modulation. Appl. Phys. Letters 5 (1964) 4–5.

    Article  ADS  Google Scholar 

  55. Didomenico, M., JR., u. V. Czarniewski: Locking of He—Ne laser modes by intracavity acoustic modulation in coupled interferometers. Appl. Phys. Letters 6 (1965) 150–152.

    Google Scholar 

  56. Deutsch, T.: Mode-locking effects in an internally modulated ruby laser. Appl. Phys. Letters 7 (1965) 80.

    Article  ADS  Google Scholar 

  57. Demaria, A. J., C. M. Ferrar u. G. E. Danielson, JR.: Mode-locking of a Nd3+-doped glass laser. Appl. Phys. Letters 8 (1966) 22–24.

    Article  ADS  Google Scholar 

  58. Didomenico, M., JR., J. E. GEUSIC et al.: Generation of ultrashort optical pulses by mode locking the YAIG-Nd laser. Appl. Phys. Letters 8 (1966) 180–183.

    Google Scholar 

  59. Mcclure, R. E.: Mode locking behavior of gas lasers in long cavities. Appl. Phys. Letters 7 (1965) 148.

    Article  ADS  Google Scholar 

  60. Harris, S. E., u. R. TARG: FM-oscillation of the He—Ne-laser. Appl. Phys. Letters 5 (1964) 202–204.

    Google Scholar 

  61. Harris, S. E.: Controlling laser oscillations. Electronics 38 (1965) Nr. 19, 101–105.

    Google Scholar 

  62. Harris, S. E., B. J. MCMURTRY: Frequency selective coupling to the FM laser. Appl. Phys. Letters 7 (1965) 265.

    Article  ADS  Google Scholar 

  63. Gürs, K., u. R. MÜLLER: Internal modulation of optical masers Proc. Symposium on Optical Masers. Brooklyn, April 16–19, 1963, Vol. XIII S. 243.

    Google Scholar 

  64. GÜRS, K., u. R. MÜLLER: Breitband-Modulation durch Steuerung der Emisson eines optischen Masers (Auskoppelmodulation). Phys. Letters 5 (1965) 179–181.

    Article  Google Scholar 

  65. Didomenico, M., JR.: Small-signal analysis of internal (coupling-type) modulation of lasers. J. Appl. Phys. 35 (1964) 2870–2876.

    Google Scholar 

  66. J. Appl. Optics 4 (1965) 123–127.

    Google Scholar 

  67. Grau, G.: Verzerrungen bei der Amplitudenmodulation von Licht. AEU 18 (1964) 389–392.

    Google Scholar 

  68. Grau, G., u. D. Rosenberger: Low-power microwave modulation of a 0,63 !i He—Nelaser. Phys. Letters 6 (1963) 129–131.

    Article  ADS  Google Scholar 

  69. Hintringer. O., u. G. SCHIFFNER: Modulation eines He—Ne-Lasers mit einem Fernsehsignal. Nachrichtentechn. Z. 17 (1964) 501–502.

    Google Scholar 

  70. Siegman, A. E., C. F. QUATE et al.: Frequency translation of an lie—Nc laser’s output frequency by acoustic output coupling inside the resonant cavity. Appl. Phys. Letters 5 (1964) 1–2.

    Article  ADS  Google Scholar 

  71. don Peterson, G., u. A. YARIV: Parametric frequency conversion of coherent light by the electro-optic effect in KDP. Appl. Phys. Letters 5 (1964) 184–186.

    Article  ADS  Google Scholar 

  72. Ross, M.: Laser Receivers. New York: Wiley 1966.

    Google Scholar 

  73. Cadres, D. E., u. B. J. MCMURTRY: Evaluating light demodulators. Electronics 37 (1964) Nr. 13, 54–61.

    Google Scholar 

  74. Caddes, D. E.: A Ku-band traveling-wave phototube. Microwaves J. 8 (1965) 46–50.

    Google Scholar 

  75. Harris, S. E.: Demodulation of phase modulated light using birefringent crystals. Proc. IEEE 52 (1964) 823–831.

    Article  Google Scholar 

  76. Harris, S. E., u. E. O. AM:uANN: Optical network synthesis using birefringent crystals. Proc. IEEE 52 (1964) 411–412.

    Article  Google Scholar 

  77. Heilmeier, G. H.: The dielectric and electrooptical properties of a molecular crystalhexamine. Appl. Opt. 3 (1964) 1281–1287.

    Article  ADS  Google Scholar 

  78. Kaminow, I. P., u. E. H. Turner: Electrooptic light modulators. Proc. IEEE 54 (1966) 1374–1390.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, R. (1969). Modulationsverfahren. In: Kleen, W., Müller, R. (eds) Laser. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87266-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87266-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87267-9

  • Online ISBN: 978-3-642-87266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics