Skip to main content

Rauschen und Kohärenz im optischen Spektralbereich

  • Chapter
Laser
  • 95 Accesses

Zusammenfassung

Im Einklang mit der für dieses Buch gewählten Darstellungsweise sollen auch die en. Obgleich damit fast alle Ergebnisse quantenmechanischer Überlegungen mehr oder weniger gut gewonnen Schwankungserscheinungen im elektromagnetischen Feld auf halbklassischer Basis abgehandelt werdwerden können, ist es doch vielfach unmöglich, subtilere Zusammenhänge (etwa die zwischen Verlusten und Schwankungen) damit begreiflich zu machen. Die wichtigsten Literaturstellen für die quantenmechanische Darstellung sind am Schluß des Kapitels getrennt zusammengestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Wolter, H.: Zu den Grundtheoremen der Informationstheorie, insbesondere in der Nachrichtentechnik. AEÜ 12 (1958) 335–345.

    MathSciNet  Google Scholar 

  2. Wolter, H.: Die Grundtheoreme der Informationstheorie als Folge der Fehlerfortpflanzungsgesetze bei der Auflösung von Faltungsintegralgleichungen. AEÜ 13 (1959) 101–113.

    Google Scholar 

  3. Wolter, H.: Verfahren zur beliebig genauen Berechnung einer Originalnachricht aus endlich vielen Beobachtungen hinter einem Rechteckbandpaß. AEÜ 13 (1959) 393–404.

    Google Scholar 

  4. Löxn, K., H. Weinertr u. H. Wolter: Zur Frage der Fehlerfortpflanzung und Sicherheit bei der Übermittlung von Nachrichten unter Verwendung von elektronischen Analogrechnern zur Rückrechnung. AEÜ 15 (1961) 455–466.

    Google Scholar 

  5. Loiiisell, W. H.: Radiation and noise in quantum electronics, McGraw Hill 1964.

    Google Scholar 

  6. Mandel, L., u. E. Wolf: The measures of bandwidth and coherence time in optics. Proc. Phys. Soc. 80, Part 4, No. 516 (1962) 894–897.

    Article  ADS  Google Scholar 

  7. Tolmax, R. C.: The principles of statistical mechanics. London: Oxford University Press 1938, 291.

    Google Scholar 

  8. Gabor, D.: Communication theory and physics. Phil. Mag. 41 (1950) 1161–1187.

    MATH  Google Scholar 

  9. Arthurs, E., u. J. L. Kelly: On the simultaneous measurement of a pair of conjugate observables. Bell Syst. Techn. J. 44, 4 (1965) 725–729.

    Google Scholar 

  10. Siegman, A. E.: Microwave solid state masers, McGraw Hill 1964, Chap. 8, 364–437.

    Google Scholar 

  11. Louisell, W. H.: Amplitude and phase uncertainty relations. Phys. Letters 7, 1 (1963) 60–61.

    Article  MathSciNet  ADS  Google Scholar 

  12. Friedrurg, H.: General amplifier noise limit, Quantum Electronics, a Symposium, ed. by C. H. Townes, New York: Columbia University Press 1960, 228–232.

    Google Scholar 

  13. Serrer, R., u. C. H. Townes: Limits on electromagnetic amplification due to complementarity. Quantum Electronics, a Symposium, ed. by C. H. Townes, New York: Columbia University Press 1960, 233–255.

    Google Scholar 

  14. Grau, G.: Rauschen im optischen Spektralbereich. Z. angew. Phys. 17, 1 (1964) 21–26.

    Google Scholar 

  15. Oliver, B. M.: Thermal and quantum noise. Proc. IEEE 53, 5 (1965) 436–454.

    Article  Google Scholar 

  16. Senitzky, I. R.: Quantum noise, Quantum electronics. Proceedings of the Third International Congress. Paris. New York: Columbia University Press 1964, 173–177.

    Google Scholar 

  17. Senitzky, I. R.: Incoherence, quantum fluctuations and noise. Phys. Rev. 128, 6 (1962) 2864–2870.

    Article  ADS  Google Scholar 

  18. Gordon, J. P.: Quantum noise in communication channels, Quantum Electronics. Proceedings of the Third International Congress, Paris. New York: Columbia University Press 1964, 55–64.

    Google Scholar 

  19. Gubler, W.: Messungen der spontanen Schwankungen der infraroten Strahlung einer Hochdruck–Hochstrom-Argonentladung. Promotionsarbeit Nr. 3678, Institut für Höhere Elektrotechnik an der Eidgenössischen Technischen Hochschule Zürich. 1965.

    Google Scholar 

  20. Grau, G.: Temperatur-und Laserstrahlung als Informationsträger. AEC 18, 1 (1964) 1–4.

    Google Scholar 

  21. Rowe, H. E.: Amplitude modulation with a noise carrier. Proc. IEEE 52, 4 (1964) 389–395.

    Article  Google Scholar 

  22. Oliver, B. M.: Signal-to-noise ratios in photoelectric mixing. Proc. IRE 49, 12 (1961) 1960–1961.

    Google Scholar 

  23. Haus, H. A., u. C. H. Townes: Comments on „noise in photoelectric mixing“. Proc. IRE 50, 6 (1962) 1544–1546.

    Google Scholar 

  24. Ross, M., D. Holshouser, E. Dallafior u. R. Hankin: Coherent light communication systems utilizing a microwave bandwidth photodetector. IRE Proc. of the National Symposium on Space Electronics and Telemetry, Oct. 1962.

    Google Scholar 

  25. Glauber, R. J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 6 (1963) 2766–2788.

    Article  MathSciNet  ADS  Google Scholar 

  26. Bolgiano, L. P.: Quantum fluctuations in microwave radiometry. IRE Trans MTT-9 (1961) 315–321.

    Google Scholar 

  27. Mandel, L.: Fluctuations in photon beams: The distribution of the photoelectrons. Proc. Phys. Soc. 74 (1959) 233–243.

    Article  ADS  Google Scholar 

  28. Bolgiano, L. P., JR.: Photoemission statistics for narrowband signals, Quantum Electronics. Proc. of the Third International Congress, Paris. New York: Columbia University Press 1964, 187–191.

    Google Scholar 

  29. Yutaka Kano: Probability distribution functions relating to blackbody radiation. J. Phys. Soc. Japan 19, 9 (1964) 1555–1560.

    Article  MathSciNet  ADS  Google Scholar 

  30. Troup, G. J.: Coherent intensity distributions from boson statistics. Proc. Phys. Soc. 86 (1965) 39–43.

    Article  ADS  Google Scholar 

  31. Mandel, L.: Intensity fluctuations of partially polarized light. Proc. Phys. Soc. 81, part 6, No. 524 (1963) 1104–1114.

    Article  ADS  Google Scholar 

  32. Lachs, G.: On the quantum-mechanical aspects of the waveshape of electromagnetic radiation. Phys. Rev. 138, 4B (1965) B 1012—B 1016.

    Google Scholar 

  33. Heffner, H.: The fundamental noise limit of linear amplifiers. Proc. IRE 50,7 (1962) 1604–1608.

    Google Scholar 

  34. Shimoda, K., H. Takahashi U. C. H. Townes: Fluctuations in amplification of quanta with application to maser amplifiers. J. Phys. Soc. Japan 12, (1957) 686–700.

    Article  ADS  Google Scholar 

  35. Gordon, J. P.: Noise at optical frequencies; information theory. Quantum Electronics and coherent Light, ed. by P. A. Miles, New York: Academic Press 1964, 156–181.

    Google Scholar 

  36. Gordon, J. P.: Quantum statistics and lasers. J. of Research of the National Bureau of Standards, Section D, Radio Science, 68 D, 9 (1964) 1031–1033.

    Google Scholar 

  37. Zemaner, H.: Elementare Informationstheorie, Wien/Munchen: Oldenbourg 1959.

    Google Scholar 

  38. Nachrichtentechnische Fachberichte, Beihefte der NTZ 28: Informationstheorie II.

    Google Scholar 

  39. Gordon, J. P.: Quantum effects in communication systems. Proc. IRE 50 (1962) 1898–1908.

    Article  Google Scholar 

  40. Paananen, R. A., H. Statz, D. L. BOBROFF U. A. ADAMS: Noise measurement in an He–Ne-Laser amplifier. Appl. Phys. Letters 4, 8 (1964) 149–151.

    Article  ADS  Google Scholar 

  41. Bridges, W. B., u. G. S. Pious: Gas laser preamplifier performance Appl. Opt. 3,10 (1964) 1189–1190.

    Google Scholar 

  42. Kogelnik, H., u. A. YARIV: Considerations of noise and schemes for its reduction in laser amplifiers Proc. IEEE 52, 2 (1964) 165–172.

    Article  Google Scholar 

  43. Steinberg, H. A.: Signal detection with a laser amplifier. Proc. IEEE 52, 1 (1964) 28–32.

    Article  Google Scholar 

  44. Beran, M. J., u. G. B. Parrent JR.: Theory of partial coherence. Englewood Cliffs/N.J.: Prentice Hall 1964.

    Google Scholar 

  45. Born, m., u. E. Wolf: Principles of optics, Oxford/London/New York/Paris: Pergamon Press 1959.

    Google Scholar 

  46. Mandel, L., u. E. Wolf: Coherence properties of optical fields. Rev. Modern Phys. 37, 2 (1965) 231–281.

    Article  MathSciNet  ADS  Google Scholar 

  47. Glauber, R. J.: Optical coherence and photon statistics, in „Quantum Optics and Electronics“, ed. by C. De Witt, A. Blandin, C. Cohen-Tannoudji, New York: Gordon und Breach 1964, 63–185.

    Google Scholar 

  48. Dugundji, J.: Envelopes and pre-envelopes of real waveforms. IRE Trans. IT-4, 1 (1958) 53–57.

    MathSciNet  Google Scholar 

  49. Reed, I. S.: On a moment theorem for complex gaussian processes. IRE Trans. IT-8 (1962) 194–195.

    Google Scholar 

  50. Golay, M. J. E.: Note on coherence vs. narrowbandedness in regenerative oscillators, masers, lasers etc. Proc. IRE 49 (1961) 958.

    Google Scholar 

  51. Hanbury Brown, R., u. R. Q. Twiss: Correlation between photons in two coherent beams of light. Nature 177, No. 4497, 7. January 1956, 27–29.

    Google Scholar 

  52. Hanbury Brown, R., u. R. Q. Twiss: Interferometry of the intensity fluctuations in light. I. Basic Theory: the correlation between photons in coherent beams of radiation. Proc. Royal Soc. 242A (1957) 300–324.

    MATH  Google Scholar 

  53. Hanbury Brown, R., u. R. Q. Twiss: Interferometry of the intensity fluctuations in light, II. An experimental test of the theory for partially coherent light. Proc. Royal Soc. 243A (1958) 291–319.

    Article  Google Scholar 

  54. Hanbury Brown, R., u. R. Q. Twiss: Interferometry of the intensity fluctuations in light, III: Application to astronomy. Proc. Royal Soc. 248A (1958) 199–221.

    Article  Google Scholar 

  55. Hanbury Brown, R., u. R. Q. Twiss: Interferometry of the intensity fluctuations in light, IV: A test of an intensity interferometer on Sirius A. Proc. Roy. Soc. 248A (1958) 222–237.

    Article  Google Scholar 

  56. Lamb, W. E., JR.: Theory of an optical maser. Phys. Rev. 134, 6A (1964) 1429–1450.

    Google Scholar 

  57. Lamb, W. E., JR.: Theory of optical maser oscillators, in Quantum Electronics and Coherent Light, ed. by P. A. Miles, New York/London: Academic Press 1964, 78 bis 110.

    Google Scholar 

  58. Grau, G.: Kohärenz und statistische Eigenschaften optischer Signale. Entwicklungsberichte Siemens und Halske 27, 3 (1964) 311–316.

    MathSciNet  Google Scholar 

  59. Gordon, E. I.: Optical maser oscillators and noise. Bell Syst. Techn. J. 43, 1 (1964) 507–539.

    Google Scholar 

  60. Grau, G., u. L. Urankar: Die Linienbreite der Laser-Strahlung. Entwicklungsberichte Siemens und Halske 27, 3 (1964) 317–320.

    MathSciNet  Google Scholar 

  61. van Der Ziel, A.: Theorie of emission noise in lasers. Proc. IEEE 52, 12 (1964) 1738.

    Article  Google Scholar 

  62. Grau, G.: Zur Theorie der homogenen Leitung mit verteilten Rauschgeneratoren AEÜ 20, 8 (1966) 409–415.

    Google Scholar 

  63. Grau, G.: Das Schwingkreis-Ersatzschaltbild des Lasers. AEÜ 20 (1966) 237–238.

    Google Scholar 

  64. Mullen, J. A.: Background noise in nonlinear oscillators. Proc. IRE 48 (1960) 1467–1473.

    Article  Google Scholar 

  65. Caughey, T. K.: Response of van der Pol’s oscillator to random excitation. J. Appl. Mech. 26, ser. E, 3 (1959) 345–348.

    MathSciNet  Google Scholar 

  66. Grivet, P., u. A. Blaquiére: Nonlinear effects of noise in electronic clocks. Proc. IEEE 51, 11 (1963) 1606–1614.

    Article  Google Scholar 

  67. Grivet, P., u. A. Blaquiére: Masers and classical oscillators. Proc. of the Symposium on Optical Masers New York, April 16–19, 1963. Polytechnic Press, 69–93.

    Google Scholar 

  68. Golay, M. J. E.: Normalized equations of the regenerative oscillator, noise, phase-locking and pulling Proc. IEEE 52, 11 (1964) 1311–1330.

    Article  Google Scholar 

  69. Hafner, E.: The effects of noise in oscillators. Proc. IEEE 54, 2 (1966) 179–198.

    Article  Google Scholar 

  70. Freed, C., u. H. A. Haus: Measurement of amplitude noise in optical cavity masers. Appl. Phys. Letters 6, 5 (1965) 85–87.

    Article  ADS  Google Scholar 

  71. Haus, H. A.: Amplitude noise in laser oscillators. IEEE J. Q. E. QE-1, 4 (1965) 179–180.

    Article  ADS  Google Scholar 

  72. Middleton, D.: An introduction to statistical communication theory, New York: McGraw Hill 1960.

    Google Scholar 

  73. MIDDLETON, D.: The distribution of energy in randomly modulated waves. Phil. Mag. 42, ser. 7, 330, July 1951, 689–707.

    MathSciNet  Google Scholar 

  74. Sauermann, H.: Quantenmechanische Behandlung des optischen Masers. Z. Phys. 189 (1966) 312–334.

    Article  ADS  Google Scholar 

  75. Fleck, J. A., JR.: Nonlinear laser noise and coherence. J. Appl. Phys. 37, 1 (1966) 188–193.

    Article  ADS  Google Scholar 

  76. Mandel, L., E. C. G. SUDARSHAN u. E. WOLF: Theory of photoelectric detection of light fluctuations. Proc. Phys. Soc. 84, No. 539 (1964) 435–444.

    Article  MathSciNet  ADS  Google Scholar 

  77. Mandel, L.: Fluctuations in light beams. Progress in Optics, Vol. 2, ed. by E. Wolf, Amsterdam: North-Holland 1963, 183–244.

    Google Scholar 

  78. Slepian, D.: Fluctuations of random noise power. Bell Syst. Techn. J. 37, 1 (1958) 163–184.

    MathSciNet  Google Scholar 

  79. Haus, H. A.: Higher order correlation functions of light intensity. MIT Quarterly Progress Rep. No. 70, 15. Juli 1963, 77–78.

    Google Scholar 

  80. Freed, C., u. H. A. Haus: Photocurrent spectrum and photoelectron counts produced by a gas laser. Phys. Rev. 141, 1 (1966) 287–298.

    Article  ADS  Google Scholar 

  81. Wolf, E., u. C. L. Mehta: Determination of the statistical properties of light from photoelectric measurements. Phys. Rev. Letters 13, 24 (1964) 705–707.

    Article  ADS  Google Scholar 

  82. Grau, G.: Noise in photoemission current. Appl. Opt. 4 (1965) 755–756.

    Article  ADS  Google Scholar 

  83. Alkemade, C. T. J.: On the excess photon noise in single-beam measurements with photoemissive and photo conductive cells. Physica 25 (1959) 1145–1158.

    Article  ADS  Google Scholar 

  84. Mclean, T. P., u. E. R. Pike: The photon counting distribution for gaussian light. Phys. Letters 15, 4 (1965) 318–320.

    Article  ADS  Google Scholar 

  85. Glauber, R. J.: Photon correlations. Phys. Rev. Letters 10, 3 (1963) 84–86.

    Article  MathSciNet  ADS  Google Scholar 

  86. Glauber, R. J.: Photon counting and field correlations. Vortrag auf der „Conference on the physics of quantum electronics“, San Juan (Puerto Rico) 30. Juni 1965.

    Google Scholar 

  87. Lawson, J. L., u. G. E. Uhlenbeck: Threshold signals, McGraw Hill 1950, 59.

    Google Scholar 

  88. Freed, C., u. H. A. Haus: Detection of light intensity fluctuations by means of photoelectron counting. Solid State Research. MIT Lincoln Laboratory, Report No. 2, 1964.

    Google Scholar 

  89. Johnson, F. A., R. Jones, T. P. Mclean u. E. R. Pike: Dead-time corrections to photon counting distributions. Phys. Rev. Letters 16, 13 (1966) 589–592.

    Article  ADS  Google Scholar 

  90. Gubler, W., H. M. J. O. STRUTT: Untersuchungen über die statistischen Schwankungen der infraroten Strahlung einer Hochdruck–Hochstrom–Argonentladung. I. Spontane Strahlungsschwankungen eines nichtschwarzen Strahlers und ihre Messung mit einer InSb-Photodiode. Z. Naturf. 20a, 8 (1965) 1011–1018.

    ADS  Google Scholar 

  91. Gubler, W., U. M. J. O. Strutt: Untersuchungen über die statistischen Schwankungen der infraroten Strahlung einer Hochdruck–Hochstrom–Argonentladung. II: Eigenschaften des Hochdruck–Hochstrom–Argonbogens sowie Berechnung und Messung der statistischen Strahlungsschwankungen. Z. Naturf. 20a, 9 (1965) 1156–1169.

    ADS  Google Scholar 

  92. Armstrong, J. A., u. A. W. Smith: Intensity fluctuations in GaAs laser emission. Phys. Rev. 140, 1A (1965) A 155—A 164.

    Google Scholar 

  93. Berkley, D. A., u. G. J. Wolga: Coherence studies of emission from a pulsed ruby laser. Phys. Rev. Letters 9 (1962) 479–482.

    Article  ADS  Google Scholar 

  94. Lipsett, S., u. L. Mandel: Coherence time measurements of light from optical ruby masers. Nature 199, No. 4893 (1963) 553.

    Article  ADS  Google Scholar 

  95. Magyar; G., u. L. Mandel: Interference fringes produced by superposition of two independent maser light beams. Nature 198, No. 4877 (1963) 255.

    Google Scholar 

  96. Javan, A., E. A. Ballik u W L Bond: Frequency characteristics of a continuous wave He—Ne-optical maser. J. Opt. Soc. Am. 52, 1 (1962) 96–98.

    Article  Google Scholar 

  97. Jaseja, T. S., A. Javan u. C. H. Townes: Frequency stability of He—Ne-Masers and measurements of length. Phys. Rev. Letters 10 (1963) 165–167.

    Article  ADS  Google Scholar 

  98. Smith, A. W., u. J. A. Armstrong: Intensity fluctuations and correlations in a CaAsLaser. Phys. Letters 16, 1 (1965) 38–39.

    Article  ADS  Google Scholar 

  99. Freed, C., u. H. A. Haus: Photoelectron statistics produced by a laser operating below the threshold of oscillation. Phys. Rev. Letters 15 (1965) 943–946.

    Article  ADS  Google Scholar 

  100. Smith, A. W., u. J. A. Armstrong: Observation of photon counting distribution for laser light below threshold. Phys. Letters 19, 8 (1966) 650–651.

    Article  ADS  Google Scholar 

  101. Martienssen, W., u. E. Spiller: Coherence and fluctuations in light beams. Am. J. Phys. 32, 12 (1964) 919–927.

    Article  ADS  Google Scholar 

  102. Arecchi, F. T., E. Gatti u. A. Sona: Time distribution of photons from coherent and gaussian sources. Phys. Letters 20, 1 (1966) 27–29.

    Article  ADS  Google Scholar 

  103. Arecciii, F. T.: Measurement of the statistical distribution of gaussian and laser sources. Phys. Rev. Letters 15, 24 (1965) 912–916.

    Article  ADS  Google Scholar 

  104. Arecchi, F. T., A. Berné u. P. Bulamacci-II: High-order fluctuations in a single-mode laser field. Phys. Rev. Letters 16, 1 (1966) 32–35.

    Google Scholar 

  105. Arzt, V., H. Haken, H. Risken, H. Sauermann, C. Schmid u. W. Weidlich: Quantum theory of noise in gas and solid state lasers with an inhomogeneously broadened line I. Z. Phys. 197, 3 (1966) 207–227.

    Article  ADS  Google Scholar 

  106. Brunet, H.: Quantum state of an ideal phase detector. Phys. Letters 10, 2 (1964) 172–173.

    Article  MathSciNet  ADS  Google Scholar 

  107. Cahill, K. E.: Coherent state representations for the photon density operator. Phys. Rev. 138, 6B (1965) B 1566—B 1576.

    Google Scholar 

  108. Carruthers, P., M. M. Nieto: Coherent states and the number-phase uncertainty relation. Phys. Rev. Letters 1, 11 (1965) 387–389.

    Article  MathSciNet  ADS  Google Scholar 

  109. Duaot, C.: A comparison between thermal and quantum noise in radio reception. Philips Res. Rep. 17 (1962) 382–392.

    Google Scholar 

  110. Glassgold, A. E., u. D. Holliday: Quantum statistical dynamics of laser amplifiers. Phys. Rev. 139, 6A (1965) A 1717—A 1734.

    Google Scholar 

  111. Glassgold, A. E., u. D. Holliday: Quantum statistics of laser amplifiers. Phys. Letters 17, 3 (1965) 249–250.

    Article  MathSciNet  ADS  Google Scholar 

  112. Gordon, J. P., W. H. Louisell u. L. R. Walker: Quantum fluctuations and noise in parametric processes II. Phys. Rev. 129, 1 (1963) 481–485.

    MATH  Google Scholar 

  113. Gordon, J. P., L. R. Walker u W. H. Louisell: Quantum statistics of masers and attenuators. Phys. Rev. 130, 2 (1963) 806–812.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  114. Glauber, R. J.: The quantum theory of optical coherence. Phys. Rev. 130, 6 (1963) 2529 bis 2539.

    Google Scholar 

  115. Haken, H.: Theory of coherence of laser light. Phys. Rev. Letters 13, 11 (1964) 329–331.

    Article  ADS  Google Scholar 

  116. Haken, H.: A nonlinear theory of laser noise and coherence I. Z. Phys. 181 (1964) 96–124.

    Article  ADS  Google Scholar 

  117. Haken, H.: A nonlinear theory of laser noise and coherence II. Z. Phys. 182 (1965) 346–359.

    Article  ADS  Google Scholar 

  118. Haken, H.: Theory of intensity and phase fluctuations of a homogeneously broadened laser. Z. Phys. 190 (1966) 327–356.

    Article  MathSciNet  ADS  Google Scholar 

  119. Haken, H., u. W. Weidlich: Quantum noise operators for the N-level system. Z. Phys. 189 (1966) 1–9.

    Article  ADS  Google Scholar 

  120. Harms, J., u. J. Lorigny: Ideal phase detector quantum state. Phys. Letters 10, 2 (1964) 173 —174.

    Google Scholar 

  121. Holliday, D., u. M. L. SAGE: Statistical description of free boson fields. Phys. Rev. 138, 2B (1965) B 485—B 487.

    Google Scholar 

  122. Kelley, P. L., u. W. H. KLEINER: Theory of electromagnetic field measurement and photoelectron counting. Phys. Rev. 136, 2A (1964) A 316—A 334.

    Google Scholar 

  123. Korenmann, V.: Quantum theory of laser coherence and noise. Phys. Rev. Letters 14, 9 (1965) 293–295.

    Article  ADS  Google Scholar 

  124. Korenmann, V.: Nonequilibrium quantum statistics, application to the laser, dissertation. Lyman Laboratory of Physics, Harvard University, Cambridge/Mass. 1965.

    Google Scholar 

  125. Lachs, G.: On the quantum mechanical aspects of the waveshape of electromagnetic radiation. Research Institute, Syracuse University, Syracuse/N. Y. U. S. Goverment Report AD-607104 (8. Sept. 1964 ).

    Google Scholar 

  126. Lax, M.: Phase noise in a homogeneously broadened laser. Vortrag auf der Konferenz „Physics of Quantum Electronics“, San Juan (Puerto Rico), 30. Juni 1965.

    Google Scholar 

  127. Outsell, W. H., A. Yariv u. A. E. Siegman: Quantum fluctuations and noise in parametric processes I. Phys. Rev. 124 (1961) 1646–1654.

    Article  ADS  Google Scholar 

  128. Mandel, L.: Intensity fluctuations of partially polarized light. Proc. Phys. Soc. 81, Part 6, No. 524 (1963) 1104–1114.

    Article  ADS  Google Scholar 

  129. Mandel, L., u. E. Wolf: Correlation in the fluctuating outputs from two square-law detectors illuminated by light of any state of coherence and polarisation. Phys. Rev. 124, 6 (1961) 1696–1702.

    Article  ADS  MATH  Google Scholar 

  130. Paul, H.: Kohärenz der Laserstrahlung in semiklassischer Näherung. Ann Phys. 7. Folge, 16 (1965) 403–406.

    Google Scholar 

  131. Pauwels, H. J.: Phase and amplitude fluctuations of the laser oscillator. IEEE J. Q. E. QE-2, 3 (1966) 54–62.

    Article  ADS  Google Scholar 

  132. Picard, R. H., u. C. R. Willis • Coherence in a model of interacting radiation and matter. Phys. Rev. 139, 1A (1965) A 10—A 15.

    Google Scholar 

  133. Risken, H.: Distribution-and correlation-functions for a laser amplitude. Z. Phys. 186 (1965) 85–98.

    Article  ADS  Google Scholar 

  134. Risken, H.: Correlation function of the amplitude and of the intensity fluctuation for a laser model near threshold. Z. Phys. 191 (1966) 302–312.

    Article  MathSciNet  ADS  Google Scholar 

  135. Sauermann, H.: Dissipation und Fluktuationen in einem Zwei-Niveau-System. Z. Phys. 188 (1965) 480–505.

    Article  ADS  Google Scholar 

  136. Schmid, C., u. H. Risken: The Fokker-Planck equation for quantum noise of the N-level system. Z. Phys. 189 (1966) 365–384.

    Article  ADS  Google Scholar 

  137. Senitzky, I. R.: Induced and spontaneous emission in a coherent field V: Theory of molecular beam amplification. Phys. Rev. 127, 5 (1962) 1638–1647.

    Article  ADS  Google Scholar 

  138. Wagner, W. G., u. G. Birnbaum: Theory of quantum oscillators in a multimode cavity. J. Appl. Phys. 32, 7 (1961) 1185–1194.

    Article  ADS  MATH  Google Scholar 

  139. Wagner, W. G., u. R. W. Hellwarth: Quantum noise in a parametric amplifier with lossy modes. Phys. Rev. 133, 4A (1964) A 915—A 920.

    Google Scholar 

  140. Weidlich, W., u. F. Haake: Coherence properties of the statistical operator in a laser model. Z. Phys. 185 (1965) 30–47.

    Article  ADS  MATH  Google Scholar 

  141. Weidlich, W., u. F. HAAKE: Master-equation for the statistical operator of solid state laser. Z. Phys. 186 (1965) 203–221.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grau, G. (1969). Rauschen und Kohärenz im optischen Spektralbereich. In: Kleen, W., Müller, R. (eds) Laser. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87266-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87266-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87267-9

  • Online ISBN: 978-3-642-87266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics