Skip to main content
  • 252 Accesses

Abstract

The main distinction between the treatment of turbulent flow in this chapter and Chapter 7 and the treatment of laminar flows in Chapters 4 and 5 is that whereas the diffusivities of momentum and heat are known transport properties in laminar flow, the effective diffusivities in turbulent flow are not. Our knowledge of these turbulent diffusivities depends on measurements of flow characteristics such as mean velocity and temperature gradients, together with corresponding turbulent fluxes of momentum (the Reynolds stresses) and of heat, and is usually expressed in terms of empirically based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodi, W.: Turbulence Models and Their Application in Hydraulics. International Association for Hydraulics Research, Delft, Netherlands, 1980.

    Google Scholar 

  2. Bradshaw, P., Cebeci, T., and Whitelaw, J. H.: Engineering Calculation Methods for Turbulent Flows. Academic, London, 1981.

    Google Scholar 

  3. Klebanoff, P. S. and Diehl, Z. W.: Some features of artificially thickened fully developed turbulent boundary layers with zero pressure gradient. NACA Rep. 1110, 1952.

    Google Scholar 

  4. Jacobs, W.: Unformung eines turbulenten Geschwindigkeitsprofils, Z. Angew. Math. Mech. 19: 87 (1939).

    Article  MATH  Google Scholar 

  5. Taylor, E. S.: Dimensional Analysis for Engineers. Clarendon, Oxford, 1973.

    Google Scholar 

  6. Van Driest, E. R.: On turbulent flow near a wall. J. Aero. Sci. 23: 1007 (1956).

    MATH  Google Scholar 

  7. Cebeci, T.: A model for eddy conductivity and turbulent Prandtl number. J. Heat Transfer 95: 227 (1973).

    Article  Google Scholar 

  8. Na, T. Y. and Habib, J. S.: Heat transfer in turbulent pipe flow based on a new mixing-length model. Appl. Sci. Res. 28: (1973).

    Google Scholar 

  9. Clauser, F. H.: The turbulent boundary layer. Advan. Appl. Mech. 4: 1 (1956).

    Article  Google Scholar 

  10. Owen, P. R. and Thomson, W. R.: Heat transfer across rough surfaces. J. Fluid Mech. 15: 321–334 (1963).

    Article  ADS  MATH  Google Scholar 

  11. Hoffmann, P. H. and Perry, A. E.: The development of turbulent thermal layers on flat plates. Int. J. Heat Mass Transfer 22: 39 (1979).

    Article  ADS  Google Scholar 

  12. Cebeci, T. and Smith, A. M. O.: Analysis of Turbulent Boundary Layers. Academic, New York, 1974.

    MATH  Google Scholar 

  13. Schlichting, H.: Boundary-Layer Theory. McGraw-Hill, New York, 1981.

    Google Scholar 

  14. Simonich, J. C. and Bradshaw, P.: Effect of freestream turbulence on heat transfer through a turbulent boundary layer. J. Heat Transfer 100: 671 (1978).

    Article  Google Scholar 

  15. Kader, B. A. and Yaglom, A. M.: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transfer 15: 23–29 (1972).

    Article  Google Scholar 

  16. Reynolds, W. C., Kays, W. M., and Kline, S. J.: Heat transfer in the turbulent incompressible boundary layer. I. Constant wall temperature. NASA MEMO 12–1–58W, 1958.

    Google Scholar 

  17. Reynolds, W. C., Kays, W. M., and Kline, S. J.: Heat transfer in the turbulent incompressible boundary layer. II. Step wall–temperature distribution. NASA MEMO 12–22–58W, 1958.

    Google Scholar 

  18. Reynolds, W. C., Kays, W. M., and Kline, S. J.: Heat transfer in the turbulent incompressible boundary layer. III. Arbitrary wall temperature and heat flux. NASA MEMO 12–3–58W, 1958.

    Google Scholar 

  19. Hildebrand, F. B.: Advanced Calculus for Applications. Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  20. Kays, W. M. and Crawford, M. E.: Convective Heat and Mass Transfer. McGraw-Hill, New York, 1980.

    Google Scholar 

  21. Chen, K. K. and Thyson, N. A.: Extension of Emmons’ spot theory to flows on blunt bodies. AIAA J. 5: 821 (1971).

    Article  ADS  Google Scholar 

  22. Michel, R.: Etude de la transition sur le profiles d’aile; établissement d’un critere de détermination de point de transition et calcul de la trainee de profile incompressible. ONERA Rep. 1/157A, 1951.

    Google Scholar 

  23. Seban, R. A. and Doughty, D. L.: Heat transfer to turbulent boundary layers with variable freestream velocity. J. Heat Transfer 78: 217 (1956).

    Google Scholar 

  24. Moretti, P. M. and Kays, W. M.: Heat transfer to a turbulent boundary layer with varying freestream velocity and varying surface temperature, an experimental study. Int. J. Heat Mass Transfer 8: 11–87 (1965).

    Article  Google Scholar 

  25. Rotta, J. C.: Turbulent boundary layers in incompressible flows. Prog. Aero. Sci. 2: 1 (1962).

    Article  Google Scholar 

  26. Pimenta, M. M., Moffat, R. J., and Kays, W. M.: The turbulent boundary layer: An experimental study of the transport of momentum and heat with the effect of roughness. Rep. No. HMT-21, Stanford University, Dept. of Mech. Eng., Stanford, CA, 1975.

    Google Scholar 

  27. Cebeci, T. and Chang, K. C.: Calculation of incompressible rough-wall boundary-layer flows. AIAA J. 16: 730 (1978).

    Article  ADS  Google Scholar 

  28. Reynolds, W. C.: Computation of turbulent flows—state of the art, 1970. Rep. MD-27, Stanford University, Stanford, CA, 1970.

    Google Scholar 

  29. Head, M. R.: Entrainment in the turbulent boundary layers. ARC RandM 3152, 1958.

    Google Scholar 

  30. Ludwieg, H. and Tillmann, W.: Untersuchungen über die Wandschubspannung in turbulenten reibungsschichten. Ing. Arch. 17:288 (1949). English translation in NACA TM 1285, 1950.

    Google Scholar 

  31. Green, J. E., Weeks, D. J., and Brooman, J. W. F.: Prediction of turbulent boundary layers and wakes in incompressible flow by a lag-entrainment method. ARC RandM 3791, 1973.

    Google Scholar 

  32. Bradshaw, P., Ferriss, D. H., and Atwell, N. P.: Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech. 28: 593 (1967).

    Article  ADS  Google Scholar 

  33. Thwaites, B. (ed): Incompressible Aerodynamics. Clarendon, Oxford, 1960.

    MATH  Google Scholar 

  34. Ko, S.-Y. and Liu, D.-Y: Experimental investigation of effectiveness, heat transfer coefficient and turbulence of film cooling. AIAA J. 18: 907–913 (1980).

    Article  ADS  Google Scholar 

  35. Pai, B. R. and Whitelaw, J. H.: The prediction of wall temperature in the presence of film cooling. Int. J. Heat Mass Transfer 14: 409 (1971).

    Article  Google Scholar 

  36. Kacker, S. C. and Whitelaw, J. H.: The effect of slot height and of slot turbulence intensity on the effectiveness of the uniform density, two-dimensional wall jet. J. Heat Transfer 90: 469 (1969).

    Article  Google Scholar 

  37. Launder, B. E., Reece, G. J., and Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68: 537 (1975).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cebeci, T., Bradshaw, P. (1984). Uncoupled Turbulent Boundary Layers. In: Physical and Computational Aspects of Convective Heat Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02411-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02411-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02413-3

  • Online ISBN: 978-3-662-02411-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics