Skip to main content

User Modeling on Social Multimedia Activity

  • Chapter
  • First Online:
User-centric Social Multimedia Computing

Part of the book series: Springer Theses ((Springer Theses))

  • 446 Accesses

Abstract

The increasing social multimedia activities conducted on multimedia sharing web sites reveal user attributes, such as age, gender, and personal interest, which have been exploited for user modeling, retrieval, and personalization. While existing user modeling solutions are devoted to inferring user attribute independently, in this chapter, we investigate the problem of relational user attribute inference. The task of attribute relation mining and user attribute inference are addressed in a unified framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.youtube.com/yt/press/statistics.html.

  2. 2.

    http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats.

  3. 3.

    http://socialstatistics.com/top/people.

  4. 4.

    http://www.gplusdata.com/.

  5. 5.

    In the following sections of this chapter, we will mix the usage of “attribute” and “attribute value” when no ambiguity is caused.

  6. 6.

    http://www.facebook.com/.

  7. 7.

    http://www.wikipedia.org/.

  8. 8.

    http://socialstatistics.com/.

  9. 9.

    http://www.faceplusplus.com/en/.

  10. 10.

    https://www.facebook.com/about/graphsearch.

References

  1. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: KDD, pp. 7–15 (2008)

    Google Scholar 

  2. Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the impact of short- and long-term behavior on search personalization. In: SIGIR, pp. 185–194 (2012)

    Google Scholar 

  3. Bi, B., Shokouhi, M., Kosinski, M., Graepel, T.: Inferring the demographics of search users: social data meets search queries. In: WWW, pp. 131–140 (2013)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Boulis, C., Ostendorf, M.: A quantitative analysis of lexical differences between genders in telephone conversations. In: ACL (2005)

    Google Scholar 

  6. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010)

    Google Scholar 

  7. Conover, M., Gonçalves, B., Ratkiewicz, J. Flammini, A., Menczer, F.: Predicting the political alignment of twitter users. In: SocialCom/PASSAT, pp. 192–199 (2011)

    Google Scholar 

  8. Crandall, D.J., Cosley, D., Huttenlocher, D.P., Kleinberg, J.M., Suri, S.: Feedback effects between similarity and social influence in online communities. In: KDD, pp. 160–168 (2008)

    Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR 1, 886–893 (2005)

    Google Scholar 

  10. Do, T.M.T., Artières, T.: Large margin training for hidden markov models with partially observed states. In: ICML, p. 34 (2009)

    Google Scholar 

  11. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  12. Felzenszwalb, P.F., McAllester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR (2008)

    Google Scholar 

  13. Filatova, E., Prager, J.M.: Occupation inference through detection and classification of biographical activities. Data Knowl. Eng. 76, 39–57 (2012)

    Article  Google Scholar 

  14. Garera, N., Yarowsky, D.: Modeling latent biographic attributes in conversational genres. In: ACL/AFNLP, pp. 710–718 (2009)

    Google Scholar 

  15. Garera, N., Yarowsky, D.: Structural, transitive and latent models for biographic fact extraction. In: EACL, pp. 300–308 (2009)

    Google Scholar 

  16. Hu, J., Zeng, H.-J., Li, H., Niu, C., Chen, Z.: Demographic prediction based on user’s browsing behavior. In: WWW, pp. 151–160 (2007)

    Google Scholar 

  17. Jones, R., Kumar, R., Pang, B.,Tomkins, A.: I know what you did last summer: query logs and user privacy. In: CIKM, pp. 909–914 (2007)

    Google Scholar 

  18. Koenigstein, N., Dror, G., Koren,Y.: Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: RecSys, pp. 165–172 (2011)

    Google Scholar 

  19. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)

    Article  Google Scholar 

  20. Magno, G., Comarela, G., Sáez-Trumper, D., Cha, M., Almeida, V.: New kid on the block: exploring the google\(+\) social graph. In: Internet Measurement Conference, pp. 159–170 (2012)

    Google Scholar 

  21. Mann, G.S., Yarowsky, D.: Multi-field information extraction and cross-document fusion. In: ACL (2005)

    Google Scholar 

  22. Mislove, A., Viswanath, B., Gummadi, P.K., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: WSDM, pp. 251–260 (2010)

    Google Scholar 

  23. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: an empirical study. In: UAI, pp. 467–475 (1999)

    Google Scholar 

  24. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  25. Otterbacher, J.: Inferring gender of movie reviewers: exploiting writing style, content and metadata. In: CIKM, pp. 369–378 (2010)

    Google Scholar 

  26. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. CoRR, cs.CL/0205070 (2002)

    Google Scholar 

  27. Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: KDD, pp. 430–438 (2011)

    Google Scholar 

  28. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes in twitter. In: Proceedings of SMUC-10, ACM, pp. 710–718 (2010)

    Google Scholar 

  29. Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analysis incorporating social networks. In: KDD, pp. 1397–1405 (2011)

    Google Scholar 

  30. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, MA.: Context-based vision system for place and object recognition. In: ICCV, pp. 273–280 (2003)

    Google Scholar 

  31. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)

    Google Scholar 

  32. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  33. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: WWW, pp. 981–990 (2010)

    Google Scholar 

  34. Xiong, L., Chen, X., Huang, T.-K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp. 211–222 (2010)

    Google Scholar 

  35. Ying, J.J.-C., Chang, Y.-J., Huang, C.-M., Tseng, V.S.: Demographic prediction based on users mobile behaviors. Mob. Data Chall. (2012)

    Google Scholar 

  36. Yu, C.-N.J., Joachims, T.: Learning structural svms with latent variables. In: ICML, pp. 147 (2009)

    Google Scholar 

  37. Yu, K., Guan, G., Zhou, M.: Resume information extraction with cascaded hybrid model. In: ACL (2005)

    Google Scholar 

  38. Zamal, F.A., Liu, W., Ruths, D.: Homophily and latent attribute inference: inferring latent attributes of twitter users from neighbors. In: ICWSM (2012)

    Google Scholar 

  39. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: WWW, pp. 531–540 (2009)

    Google Scholar 

  40. Zhou, L., Ticrea, M., Hovy, E.H.: Multi-document biography summarization. In: EMNLP, pp. 434–441 (2004)

    Google Scholar 

  41. Zhu, J., Hoi, S.C.H., Lyu, M.R., Yan,S.: Near-duplicate keyframe retrieval by nonrigid image matching. In: ACM Multimedia, pp. 41–50 (2008)

    Google Scholar 

  42. Zhuang, J., Mei, T., Hoi, S.C.H., Hua, X.-S., Li, S.: Modeling social strength in social media community via kernel-based learning. In: ACM Multimedia, pp. 113–122 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitao Sang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sang, J. (2014). User Modeling on Social Multimedia Activity. In: User-centric Social Multimedia Computing. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44671-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44671-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44670-6

  • Online ISBN: 978-3-662-44671-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics