Skip to main content

Abstract

Survival rates of many malignant diseases are steadily improving, but for patients of childbearing age, fertility restoration often becomes a vital concern after disease remission. In women, treatments such as chemo/radiotherapy can be very harmful to the ovaries, causing loss of both endocrine and reproductive functions. When gonadotoxic treatment cannot be delayed, ovarian tissue cryobanking is the only way of preserving fertility. However, this technique is not advisable for patients with certain types of cancer, since there is a risk of reintroducing malignant cells present in the cryopreserved tissue. For these patients, a safer alternative could be transplantation of isolated preantral follicles back to their natural environment. To encapsulate and protect isolated follicles, a transplantable artificial ovary needs to be created. The main goal of the artificial ovary is to mimic the natural organ, and for this, it should be composed of a matrix that encapsulates and protects not only the isolated follicles but also autologous ovarian cells and bioactive factors, which are necessary for follicle survival and development. The aim of this chapter is to describe this new technology, its indications, advantages, and the different approaches to create it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnez J, Martinez-Madrid B, Jadoul P et al (2006) Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update 12:519–535

    Article  PubMed  Google Scholar 

  2. Donnez J, Dolmans MM (2013) Fertility preservation in women. Nat Rev Endocrinol 9:735–749. doi:10.1038/nrendo.2013.205

    Article  CAS  PubMed  Google Scholar 

  3. Meirow D, Hardan I, Dor J et al (2008) Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod 23:1007–1013. doi:10.1093/humrep/den055

    Article  PubMed  Google Scholar 

  4. SEER Stat Fact Sheets: leukemia. In: USA National Cancer Institute at the National Institutes of Health. http://seer.cancer.gov/statfacts/html/leuks.html. Accessed 10 May 2015

  5. Leukaemia (all subtypes combined) statistics. In: Cancer Research UK. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia. Accessed 10 May 2015

  6. Lim DH, Maher ER (2010) Genomic imprinting syndromes and cancer. Adv Genet 70:145–175. doi:10.1016/B978-0-12-380866-0.60006-X

    Article  CAS  PubMed  Google Scholar 

  7. Rodgers RJ, Irving-Rodgers HF, Russell DL (2003) Extracellular matrix of the developing ovarian follicle. Reproduction 126:415–424

    Article  CAS  PubMed  Google Scholar 

  8. Murray AA, Gosden RG, Allison V et al (1998) Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil 113:27–33

    Article  CAS  PubMed  Google Scholar 

  9. Reynaud K, Cortvrindt R, Smitz J et al (2000) Effects of kit ligand and anti-kit antibody on growth of cultured mouse preantral follicles. Mol Reprod Dev 56:483–494

    Article  CAS  PubMed  Google Scholar 

  10. Picton HM, Gosden RG (2000) Mol Cell Endocrinol 166:27–35

    Article  CAS  PubMed  Google Scholar 

  11. Xu M, Kreeger PK, Shea LD et al (2006) Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 12:2739–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gosden RG (1990) Restitution of fertility in sterilized mice by transferring primordial ovarian follicles. Hum Reprod 5:499–504

    CAS  PubMed  Google Scholar 

  13. Carroll J, Gosden RG (1993) Transplantation of frozen-thawed mouse primordial ovarian follicles. Hum Reprod 8:1163–1167

    CAS  PubMed  Google Scholar 

  14. Dolmans MM, Martinez-Madrid B, Gadisseux E et al (2007) Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 134:253–262

    Article  CAS  PubMed  Google Scholar 

  15. Dolmans MM, Yuan WY, Camboni A et al (2008) Development of antral follicles after xenografting of isolated small human preantral follicles. Reprod Biomed Online 16:705–711

    Article  PubMed  Google Scholar 

  16. Vanacker J, Luyckx V, Dolmans MM et al (2012) Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 33:6079–6085. doi:10.1016/j.biomaterials.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  17. Orive G, Carcaboso AM, Hernández RM et al (2005) Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 6:927–931

    Article  CAS  PubMed  Google Scholar 

  18. Amorim CA, Van Langendonckt A, David A et al (2009) Survival of human preantral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod 24:92–99. doi:10.1093/humrep/den343

    Article  CAS  PubMed  Google Scholar 

  19. Vanacker J, Dolmans MM, Luyckx V et al (2014) First transplantation of isolated murine follicles in alginate. Regen Med 9:609–619. doi:10.2217/rme.14.33

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed TA, Griffith M, Hincke M (2007) Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. Tissue Eng 13:1469–1477

    Article  CAS  PubMed  Google Scholar 

  21. Cho SW, Kim I, Kim SH et al (2006) Enhancement of adipose tissue formation by implantation of adipogenic-differentiated preadipocytes. Biochem Biophys Res Commun 345:588–594

    Article  CAS  PubMed  Google Scholar 

  22. Birla RK, Borschel GH, Dennis RG et al (2005) Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng 11:803–813

    Article  CAS  PubMed  Google Scholar 

  23. Mol A, van Lieshout MI, Dam-de Veen CG et al (2005) Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26:3113–3121

    Article  CAS  PubMed  Google Scholar 

  24. Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz-Avila JI et al (2006) Construction of a complete rabbit cornea substitute using fibrin-agarose scaffold. Invest Ophthalmol Vis Sci 47:3311–3317

    Google Scholar 

  25. Suuronen EJ, Muzakare L, Doillon CJ et al (2006) Promotion of angiogenesis in tissue engineering: developing multicellular matrices with multiple capacities. Int J Artif Organs 29:1148–1157

    CAS  PubMed  Google Scholar 

  26. Nieponice A, Maul TM, Cumer JM et al (2007) Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cell within a three-dimensional fibrin matrix. J Biomed Mater Res A 81:523–530

    Article  PubMed  Google Scholar 

  27. Rowe SL, Lee S, Stegemann JP (2007) Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater 3:59–67

    Article  CAS  PubMed  Google Scholar 

  28. Bruns H, Kneser U, Holzhuter S et al (2005) Injectable liver: a novel approach using fibrin as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng 11:1718–1726

    Article  CAS  PubMed  Google Scholar 

  29. Sun T, Chan ML, Quek CH et al (2004) Improving mechanical stability and density distribution of hepatocytes microcapsules by fibrin clot and gold nanoparticles. J Biotechnol 111:169–177

    Article  CAS  PubMed  Google Scholar 

  30. Balestrini JL, Billiar KL (2006) Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J Biochem 39:2983–2990

    Google Scholar 

  31. Hojo M, Inokuchi S, Kidokoro M et al (2003) Induction of vascular endothelial growth factor by a fibrin as dermal substrate for cultured skin substitutes. Plast Reconstr Surg 111:1638–1645

    Article  PubMed  Google Scholar 

  32. Eyrich D, Brandle F, Appel B et al (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28:55–65

    Article  CAS  PubMed  Google Scholar 

  33. Mesa JM, Zaporojan V, Weinand C et al (2006) Tissue engineering cartilage with aged articular chondrocytes in vivo. Plast Reconstr Surg 118:41–49

    Article  CAS  PubMed  Google Scholar 

  34. Chung YI, Ahn KM, Jeo SH et al (2007) Enhanced bone regeneration with BMP-2 loaded functional nanoparticles-hydrogel complex. J Control Release 121:91–99

    Article  CAS  PubMed  Google Scholar 

  35. Weinand C, Pomerantseva I, Neville CM et al (2006) Hydrogel-b-TCP scaffolds and stem cells for tissue engineering bone. Bone 38:555–563

    Article  CAS  PubMed  Google Scholar 

  36. Liu JY, Swartz DD, Peng HF et al (2007) Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 75:618–628

    Article  CAS  PubMed  Google Scholar 

  37. Dietrich F, Lelkes PI (2006) Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9:111–125

    Article  CAS  PubMed  Google Scholar 

  38. Ho W, Tawil B, Dunn JC et al (2006) The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Eng 12:1587–1595

    Article  CAS  PubMed  Google Scholar 

  39. Sese N, Cole M, Tawil B (2011) Proliferation of human keratinocytes and cocultured human keratinocytes and fibroblasts in three-dimensional fibrin constructs. Tissue Eng A 17:429–437. doi:10.1089/ten.TEA.2010.0113

    Article  CAS  Google Scholar 

  40. Luyckx V, Dolmans MM, Vanacker J et al (2013) First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res 6:83. doi:10.1186/1757-2215-6-83

    Article  PubMed  PubMed Central  Google Scholar 

  41. Luyckx V, Dolmans MM, Vanacker J et al (2014) A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril 101:1149–1156. doi:10.1016/j.fertnstert.2013.12.025

    Article  PubMed  Google Scholar 

  42. Smith RM, Shikanov A, Kniazeva E et al (2014) Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng A 20:3021–3030. doi:10.1089/ten.TEA.2013.0675

    Article  CAS  Google Scholar 

  43. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14:199–215. doi:10.1089/ten.teb.2007.0435

    Article  CAS  Google Scholar 

  44. Faulk DM, Johnson SA, Zhang L et al (2014) Role of the extracellular matrix in whole organ engineering. J Cell Physiol 229:984–989. doi:10.1002/jcp.24532

    Article  CAS  PubMed  Google Scholar 

  45. Arenas-Herrera JE, Ko IK, Atala A et al (2013) Decellularization for whole organ bioengineering. Biomed Mater 8:014106. doi:10.1088/1748-6041/8/1/014106

    Article  CAS  PubMed  Google Scholar 

  46. Laronda MM, Jakus AE, Whelan KA (2015) Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 50:20–29. doi:10.1016/j.biomaterials.2015.01.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Badylak SF, Brown BN, Gilbert TW et al (2011) Biologic scaffolds for constructive tissue remodeling. Biomaterials 32:316–319

    Article  CAS  PubMed  Google Scholar 

  48. Hoganson DM, Owens GE, O’Doherty E et al (2010) Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials 31:6934–6940. doi:10.1016/j.biomaterials.2010.05.026

    Article  CAS  PubMed  Google Scholar 

  49. Voytik-Harbin SL, Brightman AO, Kraine MR et al (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491

    Article  CAS  PubMed  Google Scholar 

  50. Viswanath A, Germain L, Shakesheff K et al (2015) Hydrogen derived from decellularized bovine ovarian extracellular matrix; (Abstract 1492). Presented at the 4th TERMIS World Congress, 8 September 2015, Boston, MA, USA

    Google Scholar 

  51. Tagler DJ, Shea LD, Woodruff TK (2011) Contributions of ovarian cells to follicle culture. In: Donnez J, Kim SS (eds) Principles and practice of fertility preservation, 1st edn. Cambridge University Press, Cambridge, pp 409–420

    Chapter  Google Scholar 

  52. Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504. doi:10.1530/REP-10-0094

    Article  CAS  PubMed  Google Scholar 

  53. Soares M, Sahrari K, Chiti MC et al (2015) The best source of isolated stromal cells for the artificial ovary: medulla or cortex, cryopreserved or fresh? Hum Reprod 30(7):1589–1598

    Google Scholar 

  54. Dath C, Dethy A, Van Langendonckt A et al (2011) Endothelial cells are essential for ovarian stromal tissue restructuring after xenotransplantation of isolated ovarian stromal cells. Hum Reprod 26:1431–1439. doi:10.1093/humrep/der073

    Article  CAS  PubMed  Google Scholar 

  55. Orisaka M, Tajima K, Mizutani T et al (2006) Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Bio Reprod 75:734–740

    Article  CAS  Google Scholar 

  56. Dudás J, Ramadori G, Knittel T (2000) Effect of heparin and liver heparan sulphate on interaction of HepG2-derived transcription factors and their cis-acting elements: altered potential of hepatocellular carcinoma heparan sulphate. Biochem J 1:245–251

    Article  Google Scholar 

  57. Smitz J, Dolmans MM, Donnez J et al (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16:395–414. doi:10.1093/humupd/dmp056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dolmans MM, Michaux N, Camboni A et al (2006) Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod 21:413–420

    Article  CAS  PubMed  Google Scholar 

  59. Laronda MM, Duncan FE, Hornick JE et al (2014) Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 31:1013–1028

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vanacker J, Camboni A, Dath C et al (2011) Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil Steril 96:379–383.e3. doi:10.1016/j.fertnstert.2011.05.075

    Article  CAS  PubMed  Google Scholar 

  61. Soares M, Sahrari K, Amorim CA et al (2015) Evaluation of a human ovarian follicle isolation technique to obtain disease-free follicle suspensions before safely grafting to cancer patients. Fertil Steril 104(3):672–680.e2

    Google Scholar 

  62. Soares M, Saussoy P, Sahrari K et al (2015) Is transplantation of a few leukemic cells inside an artificial ovary able to induce leukemia in an experimental model? J Assist Reprod Genet 32:597–606. doi:10.1007/s10815-015-0438-x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Amorim CA (2011) Artificial ovary. In: Donnez J, Kim SS (eds) Principles and practice of fertility preservation, 1st edn. Cambridge University Press, Cambridge, pp 448–458

    Chapter  Google Scholar 

  64. Newton H, Aubard Y, Rutherford et al (1996) Low temperature storage and grafting of human ovarian tissue. Hum Reprod 11:1487–1491

    Article  CAS  PubMed  Google Scholar 

  65. Aubard Y, Piver P, Cogni Y et al (1999) Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod 14:2149–2154

    Article  CAS  PubMed  Google Scholar 

  66. Baird DT, Webb R, Campbell BK et al (1999) Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 °C. Endocrinology 140:462–471

    CAS  PubMed  Google Scholar 

  67. Zhang Z, Wang ZX, Liu S (2004) Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials 25:177–187

    Article  PubMed  Google Scholar 

  68. Bergmann NM, West JL (2008) Histogenesis in three-dimensional scaffolds. In: Atala A, Lanza R, Thomson JA et al (eds) Principles of regenerative medicine. Academic, Burlington, pp 686–703

    Chapter  Google Scholar 

  69. Shi H, Han C, Mao Z et al (2008) Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng A 14:1775–1785

    Article  CAS  Google Scholar 

  70. Peters A, Baruch Y, Weisbuch F et al (2003) Enhancing the vascularization of three-dimensional porous alginate by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65:489–497

    Google Scholar 

  71. Tanihara M, Suzuki Y, Yamamoto E et al (2001) Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J Biomed Mater Res 56:216–221

    Article  CAS  PubMed  Google Scholar 

  72. Chen RR, Silva EA, Yuen WW et al (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264

    Article  PubMed  Google Scholar 

  73. Gigli I, Cushman RA, Wahl CM et al (2005) Evidence for a role for anti-Mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol Reprod Dev 71:480–488

    Article  CAS  PubMed  Google Scholar 

  74. Camboni A, Martinez-Madrid B, Dolmans MM et al (2008) Autotransplantation of frozen-thawed ovarian tissue in a young woman: ultrastructure and viability of grafted tissue. Fertil Steril 90:1215–1218

    Article  PubMed  Google Scholar 

  75. Keros V, Xella S, Hultenby K et al (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683

    Article  CAS  PubMed  Google Scholar 

  76. Nisolle M, Casanas-Roux F, Qu J et al (2000) Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril 74:122–129

    Article  CAS  PubMed  Google Scholar 

  77. Nottola SA, Camboni A, Van Langendonckt A et al (2008) Cryopreservation and xenotransplantation of human ovarian tissue: an ultrastructural study. Fertil Steril 90:23–32

    Article  PubMed  Google Scholar 

  78. Laschke MW, Menger MD, Vollmar B (2002) Ovariectomy improves neovascularisation and microcirculation of freely transplanted ovarian follicles. J Endocrinol 172:535–544

    Article  CAS  PubMed  Google Scholar 

  79. Amorim CA, Gonçalves PB, Figueiredo JR (2003) Cryopreservation of oocytes from pre-antral follicles. Hum Reprod Update 9:119–129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiani A. Amorim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Amorim, C.A. (2016). Artificial Ovary. In: Suzuki, N., Donnez, J. (eds) Gonadal Tissue Cryopreservation in Fertility Preservation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55963-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55963-4_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55961-0

  • Online ISBN: 978-4-431-55963-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics