Skip to main content

Biocontrol and Bioremediation: Two Areas of Endophytic Research Which Hold Great Promise

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Research into the beneficial use of endophytic organisms has dramatically increased worldwide in recent years. Endophytes are typically bacteria or fungi which colonize the internal tissues of plant hosts without causing visible negative effects. Two areas in endophyte research, which hold tremendous positive economic and environmental potential, are biocontrol and bioremediation. Biocontrol, short for biological control is the intentional use of a specific organism or their metabolic by-products to limit the harmful impact of a plant pest. Endophytes due to their unique symbiotic relationships within their hosts have the potential to directly act antagonistically against plant pests. In addition endophytes may also act indirectly against pests, benefitting their hosts by enhancing general plant growth or plant-protection responses, such as in the case of induced systemic resistance. Bioremediation is the use of microorganisms to alter or reduce the toxic impact of pollutants through various forms of metabolic activity. Microorganisms, in part due to their short life spans, can adapt relatively fast to environmental pollutants. Endophytes with these adaptations can in some cases provide their hosts with the capability to remediate their surrounding microenvironments. In this review, we will explore recent advances made in the promising areas of biocontrol and bioremediation research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    Article  PubMed  CAS  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • Alström S (2001) Characteristics of bacteria from oilseed rape in relations to their biocontrol activity against Verticillium dahlia. J Phytopathol 149:57–64

    Article  Google Scholar 

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effects of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Article  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  PubMed  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bacon C (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agri Ecosyst Environ 44:123–141

    Article  Google Scholar 

  • Bacon CW, Hinton DM (2007) Isolation, in planta detection, and uses of endophytic bacteria for plant protection. In: Hurst CJ et al (eds) Manual of environmental microbiology. ASM Press, Washington, DC

    Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichlöe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:76–81

    Google Scholar 

  • Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–45

    Article  PubMed  CAS  Google Scholar 

  • Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt I (2013) Host genotype shapes the foliar fungal microbiome of Balsam Poplar (Populus balsamifera). PLOS One 8(1):e53987

    Article  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalup M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  PubMed  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  PubMed  Google Scholar 

  • Canakar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Article  Google Scholar 

  • Clay K (1987) Effects of fungal endophytes on seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. Strain PsJN. Appl Environ Mirobiol 4:1685–1693

    Article  Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    PubMed  CAS  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Cruz AT, Cazacu AC, Allen CH (2007) Pantoea agglomerans, a plant pathogen causing human disease. J Clin Microbiol 45:1989–1992

    Article  PubMed  Google Scholar 

  • Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Ali S, Radwan S (2009) The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74:1354–1359

    Article  PubMed  CAS  Google Scholar 

  • Denton BD (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Microbiol Mol Genet 3:1–5

    Google Scholar 

  • Doberski JW, Tribe HT (1980) Isolation of entomogenous fungi from elm bark and soil with reference to ecology of Beauveria bassiana and Metarhizium anisopliae. Trans Br Mycol Soc 74:95–100

    Article  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant Microbe Interact 16:580–587

    Article  PubMed  CAS  Google Scholar 

  • Franks A, Ryan PR, Abbas A, Mark GL, O’Gara F (2006) Molecular tools for studying plant growth-promoting Rhizobacteria (PGPR). In: Molecular techniques for soil and rhizosphere microorganisms. CABI Publishing, Wallingford/Oxfordshire

    Google Scholar 

  • Fraser EDG (2003) Social vulnerability and ecological fragility: building bridges between social and natural sciences using the Irish potato famine as a case study. Conserv Ecol 7:1–9

    Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  PubMed  CAS  Google Scholar 

  • Gange AC, Dey S, Currie AF, Sutton BC (2007) Site- and species-specific differences in endophyte occurrence in two herbaceous plants. J Ecol 94:614–622

    Article  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  PubMed  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Hammond-Kosack K, Jones JDG (2000) Responses to plant pathogens. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1102–1156

    Google Scholar 

  • Han DY, Coplin DL, Bauer WD, Hoitink HAJ (2000) A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathology 90:327–332

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    PubMed  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Elsas JDV (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Jabaji-Hare S, Neate SM (2005) Nonpathogenic binucleate Rhizoctonia spp. and benzothiadiazole protect cotton seedlings against Rhizoctonia damping-off and Alternaria leaf spot in cotton. Biocontrol 95:1030–1036

    Google Scholar 

  • Janisiewicz WJ, Roitman J (1988) Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700

    Article  Google Scholar 

  • Johnson MC, Dahlman DL, Siegel MR, Bush LP, Latch GCM, Potter DA, Varney DR (1985) Insect feeding deterrents in endophyte-infected tall fescue. Appl Environ Microbiol 49:568–571

    PubMed  CAS  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Khan Z, Doty S (2011) Endophyte-assisted phytoremediation. Curr Top Plant Biol 12:97–104

    Google Scholar 

  • Khan T, Latif A, Hamayun M, Ahmad N, Hussain J, Kang S, Kim Y, Adnan M, Tang D, Waqas M, Radhakrishnan R, Hwang Y, Lee I (2011) Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L.J. J Microbiol Biotechnol 21:893–902

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2012) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  PubMed  Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311:152–159

    Article  PubMed  CAS  Google Scholar 

  • Lai K, Chen S, Hu M, Hu Q, Geng P, Weng Q, Jia J (2012) Control of postharvest green mold of citrus fruit by application of endophytic Paenibacillus polymyxa strain SG-6. Postharvest Biol Technol 69:40–48

    Article  Google Scholar 

  • Latch GCM (1993) Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agri Environ Microbiol 44:143–156

    Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187

    Article  CAS  Google Scholar 

  • Lodwyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mazgeay M, van der Leile D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Loiret FG, Ortega E, Kleiner D, Ortega-Rhoďes P, Roďes R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  PubMed  CAS  Google Scholar 

  • Maara R, Ambrosimo P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrá D, Fogliano V, Scala F, Lorito M (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Article  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  PubMed  CAS  Google Scholar 

  • Mehta A, Brasileiro ACM, Souza DSL, Romano E, Campos MA, Frossi-de-Śa MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL (2008) Plant-pathogen interactions: what is proteomics telling us? FEBS J 275:3731–3746

    Article  PubMed  CAS  Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  PubMed  CAS  Google Scholar 

  • Niere BI, Speijer PR, Gold CS, Sikora RA (1999) Fungal endophytes from bananas for the biocontrol of Radopholus similis. In: Frison EA, Gold CS, Karamura EA, Sikora RA (eds) Mobilizing IPM for sustainable banana production in Africa. INIBAP, Montpellier, pp 237–245

    Google Scholar 

  • Ownley BH, Griffin MR (2012) Dual biological control of insect pests and plant pathogens with fungi in the order Hypocreales. In: Biocontrol: management, processes and challenges. Nova Science Publishers, Inc., Hauppauge

    Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy S (2005) Phytoremediation and hyperaccumulator plants. Hort. Purdue.edu/hort/research/murphy/pdfs/metals11.pdf

    Google Scholar 

  • Pirttila AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Pysiol Plant 121:305–312

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Ann Rev Phytopathol 49:291–315

    Article  CAS  Google Scholar 

  • Porteous-Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell D, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  Google Scholar 

  • Rajikumar M, Noriharu A, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  Google Scholar 

  • Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 52:140–149

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Carrozza GP, Vettori L, Felici C, Cinelli F, Toffanin A (2012) Plant beneficial microbes and their application in plant biotechnology. In: Agbo EC (ed) Innovations in biotechnology. Intechopen, pp 57–72. doi:10.5772/2450

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Saunders M, Kohn LM (2008) Evidence for alternation of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 6:661–686

    Article  Google Scholar 

  • Sessitsch A, Hardoim P, Dȍring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurk B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  PubMed  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:1469–2475

    Article  Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Article  Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions of nifH gene pools in roots of rice. Environ Microbiol 6:1009–1015

    Article  Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Thane U, Adler A, Clasen P-E, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A (2004) Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol 95:257–266

    Article  Google Scholar 

  • United States National Research Council, Board Agric (1993) Pesticides in the diets of infants and children. National Academy Press, Washington, DC, 408 pp

    Google Scholar 

  • Van Lanteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, Van Rijn PCJ, Thomas MB, Tommasini MG, Zeng QQ (2003) Environmental risk assessment of exotic natural enemies used in innudative biological control. Biocontrol 48:3–38

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  PubMed  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant-microbe partnerships to improve biomass production and remediation. Curr Trends Biotechnol 27:591–598

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  PubMed  CAS  Google Scholar 

  • Weyens N, Taghavi S, Barac T, Lelie D, Jana B, Artois T, Carleer R, Vangronsveld J (2009c) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16:830–843

    Article  CAS  Google Scholar 

  • Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cotton wood. Biol Fertil Soils 45:669–674

    Article  CAS  Google Scholar 

  • Yousaf S, Ripka K, Reichenauer TG, Andria V, Afzal M, Sessitsch A (2010a) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401

    Article  PubMed  CAS  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010b) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    Article  PubMed  CAS  Google Scholar 

  • Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2012) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediat 15:51–64

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ruth Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Griffin, M.R. (2014). Biocontrol and Bioremediation: Two Areas of Endophytic Research Which Hold Great Promise. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_14

Download citation

Publish with us

Policies and ethics