Skip to main content

Endophytes and Plant Secondary Metabolite Synthesis: Molecular and Evolutionary Perspective

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

The distribution of endophytes (fungal and bacterial) is ubiquitous and almost without exception; the endophytes have been reported from all tissues, including leaves, stems, roots, flowers and fruits. As typical symptomless organisms, in contrast to their pathogenic counterparts, they pose a serious challenge in explaining their continued maintenance in plants. How do plants tolerate them? And how do the endophytes contain the plant defences? But a more intriguing and enigmatic issue with many endophytes is the fact that they mimic the production of specific plant-associated secondary metabolites (e.g. taxol, camptothecin and rohitukine) in culture, independent of the host tissue. Several theories including the possibility of horizontal gene transfer from the respective hosts have been proposed, but none has so far been supported. In this paper, we critically review studies on endophytes producing plant secondary metabolites and explore the possible molecular mechanisms. By analysing the pathway genes for a few major metabolites, including taxol and camptothecin, we show that a far more intricate molecular mechanism might be involved in the production of the secondary metabolites by the endophytes. We show that these molecular mechanisms could have arisen through the evolutionary interactions of the endophytes with their respective host plants. We discuss these findings in the context of the current interest in harnessing endophytes as alternative sources of plant secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alex MS, Michael JB (1998) Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol 44:351–355

    Article  Google Scholar 

  • Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189–196

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursat TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophyte limit pathogen damage in tropical trees. Proc Natl Acad Sci U S A 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker Inc., New York, p 487

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  PubMed  CAS  Google Scholar 

  • Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Cumini E, Becard G, Bonfante P (2004) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 70:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Article  PubMed  Google Scholar 

  • Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloë/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–106

    Article  Google Scholar 

  • Cordell GA (1974) The biosynthesis of indole alkaloids. Lloydia 37:219–298

    PubMed  CAS  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Faeth SH, Hammon KE (1997) Fungal endophytes in oak trees. I. Long-term patterns of abundance and associations with leafminers. Ecology 78:810–819

    Article  Google Scholar 

  • Gaylord ES, Preszler RW, Boecklen WJ (1996) Interactions between host plants, endophytic fungi, and a phytophagous insect in an oak (Quercus Grisea × Q. Gambelii) hybrid zone. Oecologia 105:336–342

    Article  Google Scholar 

  • Govindachari TR, Viswanathan N (1972) 9-methoxy camptothecin A new alkaloid from Mappia foetida. Indian J Chem 10:453–454

    CAS  Google Scholar 

  • Griffithis AJF (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59:673–685

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implication of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  • Gurudatt PS, Priti V, Shweta S, Ramesha BT, Ravikanth G, Vasudeva R, Amna T, Deepika S, Ganeshaiah KN, Uma Shaanker R, Puri S, Qazi GN (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98:1006–1009

    CAS  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  PubMed  CAS  Google Scholar 

  • Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170

    Article  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(database issue):D277–D280

    Article  PubMed  CAS  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009a) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Zuhlke S, Kosuth J, Cellarova E, Spiteller M (2009b) Light independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Spiteller M (2010) Do endophyte metabolomics reflect the phytochemical diversity of the host plant? A test of the hypothesis with Hypericum species. In: Patro LR (ed) Biodiversity conservation and management. Discovery Publishing House Pvt. Ltd., New Delhi, pp 1–28

    Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on Camptothecin biosynthesis. J Nat Prod 74:764–775

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli. FEBS Lett 237:40–44

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Sidhu RS, Ford E, Hess WM, Strobel GA (1998) The induction of taxol production in the endophytic fungus Periconia sp. from Torreya grandifolia. J Ind Microbiol 20:259–264

    Article  CAS  Google Scholar 

  • McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939

    Article  PubMed  CAS  Google Scholar 

  • Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC, Bovenberg RA, Breitling R, Takano E (2010) The Sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224

    Article  PubMed  Google Scholar 

  • Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma Shaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329

    Article  PubMed  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386

    Article  PubMed  CAS  Google Scholar 

  • Petrini O, Sieber TH, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    Article  PubMed  CAS  Google Scholar 

  • Priti V, Ramesha BT, Shweta S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Uma Shaanker R (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:4–6

    Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  PubMed  CAS  Google Scholar 

  • Ramesha BT, Suma HK, Senthilkumar U, Priti V, Ravikanth G, Vasudeva R, Santhosh Kumar TR, Ganeshaiah KN, Uma Shaanker R (2013) New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine 20:521–527

    Article  PubMed  CAS  Google Scholar 

  • Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209

    Article  CAS  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujowl WS (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches’ broom disease. Int J Biol Sci 1:24–33

    Article  PubMed  CAS  Google Scholar 

  • Sachin N, Manjunatha BL, Mohana Kumara P, Ravikanth G, Shweta S, Suryanarayanan TS, Ganeshaiah KN, Uma Shaanker R (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104:178–182

    CAS  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Sandrine G, Bernard L, Olivier L (2010) FUNGI path: a tool to assess fungal metabolic pathways predicted by orthology. BMC Genomics 11:81

    Article  Google Scholar 

  • Schardl CL, Liu JS, White JF, Finkel RA, An Z, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178:27–41

    Article  CAS  Google Scholar 

  • Schiff PB, Horowitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma Shaanker R (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  PubMed  CAS  Google Scholar 

  • Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013a) Endophytic fungi from Miquelia dentata Bedd produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342

    Article  PubMed  CAS  Google Scholar 

  • Shweta S, HimaBindu J, Raghu J, Suma HK, Manjunatha BL, Mohana Kumara P, Ravikanth G, Nataraja KN, Ganeshaiah KN, Uma Shaanker R (2013b) Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd (Icacinaceae). Phytomedicine. doi:org/10.1016/j.phymed.2013.04.004

  • Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Med 75:1561–1566

    Article  PubMed  CAS  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Suffness M (1995) Taxol, science and applications. CRC Press, Boca Raton

    Google Scholar 

  • Sun Y, Lu H, Li Y, Sun C, Song J, Niu Y, Zhu Y, Dong L, Lv A, Tramontano E, Chen S (2011) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics C7–533(12):1–11

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Uma Shaanker R, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of Nothapodytes nimmoniana for Camptothecin, an important anticancer alkaloid: toward the development of a sustainable production system. Bioactive Mol Med Plants 2008:197–213

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Wall ME, Wani MC, Cook CE (1966) Plant antitumor agents-I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  • Xiong Z-Q, Yang Y-Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol 13:71

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44:395–403

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 134:161–170

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Zhang L, Guo B, And Guo S (2004) Preliminary study of vincristine-endophytic fungus isolated from leaves of Catharanthus roseus. Zhongcaoyao 35:79–81

    CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Zhou P, Yu LJ (2009) An endophytic Taxol producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas A (ed) Current research, technology and education in tropics in applied microbiology and microbial biotechnology, Microbiology book series – Number 2

    Google Scholar 

  • Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic Huperzine A–producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109:1469–1478

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work reported in the paper has been supported by grants from the Department of Biotechnology, Government of India. Thanks are due to the members of the School of Ecology and Conservation for brainstorming some of the ideas presented in the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Uma Shaanker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kumara, P.M. et al. (2014). Endophytes and Plant Secondary Metabolite Synthesis: Molecular and Evolutionary Perspective. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_9

Download citation

Publish with us

Policies and ethics