Skip to main content

Plasma Kinetic Theory: Vlasov–Maxwell and Related Equations

  • Chapter
Symmetries of Integro-Differential Equations

Part of the book series: Lecture Notes in Physics ((LNP,volume 806))

  • 1698 Accesses

Abstract

This chapter is devoted to a group analysis of the Vlasov–Maxwell and related type equations. The equations form the basis of the collisionless plasma kinetic theory, and are also applied in gravitational astrophysics, in shallow-water theory, etc. Nonlocal operators in these equations appear in the form of the functionals defined by integrals of the distribution functions over momenta of particles.

In the beginning sections the plasma kinetic theory equations are introduced and the way of looking at the symmetries of nonlocal equations is described. Much of the importance of the approach used in this chapter for calculating symmetries stems from the procedure of solving determining equations using variational differentiation. The set of symmetries obtained in the sections that follow comprises symmetries for the Vlasov–Maxwell equations of the non-relativistic and relativistic electron and electron–ion plasmas in both one- and three-dimensional cases, and symmetries for Benney equations. In the concluding sections of this chapter the procedure for symmetry calculation and the renormalization group algorithm go hand in hand to present illustrations from plasma kinetic theory, plasma dynamics, and nonlinear optics, which demonstrate the potentialities of the method in construction of analytic solutions to nonlocal problems of nonlinear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually it is assumed for gas particles that the energy of their interaction is small compared to their kinetic energy. Up to the order of magnitude the latter can be estimated as κ T, where T is the temperature and κ is the Boltzmann constant. For charged plasma particles the energy of interaction is of the order of e 2 N 1/3, where N −1/3 is the mean distance between particles, e is a charge and N is the number of particles in a unit volume. Hence the plasma demonstrates the gas property provided that

    $$e^2N^{1/3}\ll \kappa T.$$

    This inequality holds for all real plasmas.

  2. 2.

    Equation (4.1.1) is approximate, as it neglects collisions of plasma particles. In view of particle collisions their motion becomes correlated. This effect leads to appearance of non-zero term in the right-hand side of (4.1.1), the so-called collision integral. However, the explicit form of the collision integral depends on particular conditions defined by the plasma properties in every concrete situation, and we will not discuss them here. In many particular problems collision effects can be neglected.

  3. 3.

    Frequently the six operators specifying hyperbolic and circular rotations in (c 2 t,x k) and (x j,x k) planes, respectively (j,k=1,2,3;r=(x 1,x 2,x 3)), are written in a universal form using the operators M μ ν , where M 0k =iB0k and M jk =iR jk . The three operators (M 23,M 31,M 12) are components of the vector-operator M=[r×P].

  4. 4.

    For more details we refer the reader to [24].

  5. 5.

    For simplicity these equations are omitted here.

  6. 6.

    This is representable as the integral \(\int_{0}^{1}n(x,\vartheta)\,\mathrm{d}\cos\vartheta\) of the kinetic equation solution n(x,ϑ).

  7. 7.

    Here the bottom index specifies on a corresponding tensor component, instead of designating a derivative.

  8. 8.

    The term ‘quasi-Chaplygin media’ is used in the discussion of nonlinear phenomena developing in accordance with the mathematical scenario for the Chaplygin gas, i.e., the gas with a negative adiabatic exponent. At first glance, such a model looks like the standard model of gas dynamics, but it corresponds to the negative first derivative of the ‘pressure’ with respect to the ‘density.’ A characteristic feature of quasi-Chaplygin media is a universal mathematical form of various nonlinear effects accompanying the development of an instability.

References

  1. Vlasov, A.A.: The vibrational properties of an electron gas. J. Exp. Theor. Phys. 8(3) (1938) 291–317 (in Russian); see also Sov. Phys. Usp. 10, 721–733 (1968)

    MATH  Google Scholar 

  2. Lewak, G.J.: More-uniform perturbation theory of the Vlasov equation. J. Plasma Phys. 3, 243–253 (1969)

    Article  ADS  Google Scholar 

  3. Pustovalov, V.V., Chernikov, A.A.: Functional averaging and kinetics of plasma in Lagrangean variables. Preprint No. 171, P.N. Lebedev Physical Institute, AN USSR (1980) (in Russian)

    Google Scholar 

  4. Pustovalov, V.V., Romanov, A.B., Savchenko, M.A., Silin, V.P., Chernikov, A.A.: One method for solving the Vlasov kinetic equation. Sov. Phys., Lebedev Inst. Rep. 12, 28–32 (1976)

    Google Scholar 

  5. Taranov, V.B.: On the symmetry of one-dimensional high frequency motions of a collisionless plasma. Sov. J. Tech. Phys. 21, 720–726 (1976)

    Google Scholar 

  6. Kovalev, V.F., Krivenko, S.V., Pustovalov, V.V.: Group symmetry of the kinetic equations of a collisionless plasma. JETP Lett. 55(4), 256–259 (1992)

    ADS  Google Scholar 

  7. Kovalev, V.F., Krivenko, S.V., Pustovalov, V.V.: Group analysis of the Vlasov kinetic equation, I. Differ. Equ. 29(10), 1568–1578 (1993)

    MathSciNet  Google Scholar 

  8. Kovalev, V.F., Krivenko, S.V., Pustovalov, V.V.: Group analysis of the Vlasov kinetic equation, II. Differ. Equ. 29(11), 1712–1721 (1993)

    MathSciNet  Google Scholar 

  9. Grigor’ev, Yu.N., Meleshko, S.V.: Group analysis of integro-differential Boltzmann equation. Sov. Phys. Dokl. 32, 874–876 (1987)

    ADS  MATH  Google Scholar 

  10. Volterra, V.: Theory of Functional and of Integral and Integro-Differential Equations. Blackie, London (1929). Edited by Fantappie, L. Translated by Long, M. Also available as: Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Dover, New York (1959). Russian translation: Nauka, Moscow (1982)

    Google Scholar 

  11. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Perturbation methods in group analysis. J. Sov. Math. 55(1), 1450 (1991)

    Article  Google Scholar 

  12. Baikov, V.A., Gazizov, R.K., Ibragimov, N.Kh.: Perturbation methods in group analysis. In: Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., vol. 34, pp. 85–147. VINITI, Moscow (1989) (in Russian). J. Sov. Math. 55(1), 1450–1490 (1991)

    Article  Google Scholar 

  13. Dorozhkina, D.S., Semenov, V.E.: Exact solution of Vlasov equations for quasineutral expansion of plasma bunch into vacuum. Phys. Rev. Lett. 81, 2691–2694 (1998)

    Article  ADS  Google Scholar 

  14. Kovalev, V.F., Bychenkov, V.Yu., Tikhonchuk, V.T.: Particle dynamics during adiabatic expansion of a plasma bunch. JETP 95(2), 226–241 (2002)

    Article  ADS  Google Scholar 

  15. Landau, L.D., Livshitz, E.M.: Course of Theoretical Physics, vol. 2, The Classical Theory of Fields. Nauka, Moscow (1973)

    Google Scholar 

  16. Kovalev, V.F., Krivenko, S.V., Pustovalov, V.V.: Symmetry group of Vlasov–Maxwell equations in plasma theory. In: Proceedings of the International Conference “Symmetry in Nonlinear Mathematical Physics”, July 3–8, 1995, Kiev, Ukraina, V. 2. J. Nonlinear Math. Phys. 3(1–2), 175–180 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1: Symmetries, Exact Solutions and Conservation Laws (1994); vol. 2: Applications in Engineering and Physical Sciences (1995); vol. 3: New Trends in Theoretical Developments and Computational Methods (1996). CRC Press, Boca Raton

    MATH  Google Scholar 

  18. Benney, D.J.: Some properties of long nonlinear waves. Stud. Appl. Math. L11(1), 45–50 (1973)

    Google Scholar 

  19. Krasnoslobodtzev, A.V.: Gas dynamic and kinetic analogies in the theory of vertically inhomogeneous shallow water. Trans. Inst. Gen. Phys. USSR Acad. Sci. 18, 33–71 (1989) (in Russian)

    Google Scholar 

  20. Kupershmidt, B.A., Manin, Yu.I.: Long-wave equation with free boundary. I. Conservation laws and solutions. Funct. Anal. Appl. 11(3), 188–197 (1977)

    Article  MathSciNet  Google Scholar 

  21. Kupershmidt, B.A., Manin, Yu.I.: Long-wave equation with free boundary. II. Hamiltonian structure and higher equations. Funct. Anal. Appl. 12(1), 20–29 (1978)

    MathSciNet  MATH  Google Scholar 

  22. Zakharov, V.E.: Benney equation and quasi-classical approximation in the method of the inverse problem. Funct. Anal. Appl. 14(2), 89–98 (1980)

    Article  MATH  Google Scholar 

  23. Gibbons, J.: Collisionless Boltzmann equations and integrable moment equations. Physica D3 3(3), 503–511 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Ibragimov, N.H., Kovalev, V.F., Pustovalov, V.V.: Symmetries of integro-differential equations: a survey of methods illustrated by the Benney equations. Nonlinear Dyn. 28, 135–153 (2002). Preprint math-ph/0109012

    Article  MathSciNet  MATH  Google Scholar 

  25. Gurevich, A.V., Pitaevski, L.P.: Nonlinear dynamics of a rarefied plasmas and ionospheric aerodynamics. In: Problems of Plasma Theory, vol. 10, pp. 3–87. Nauka, Moscow (1980) (in Russian). Reviews of Plasma Physics, vol. 10. Edited by Acad. Leontovich, M.A. Translated from Russian by Glebov, O. Translation editor: ter Haar, D., Department of Theoretical Physics, University of Oxford, Oxford, England. Published by Consultants Bureau, New York (1986)

    Google Scholar 

  26. Kovalev, V.F., Pustovalov, V.V.: Functional self-similarity in a problem of plasma theory with electron nonlinearity. Theor. Math. Phys. 81, 1060–1071 (1990)

    Article  Google Scholar 

  27. Shirkov, D.V.: Several topics on renorm-group theory. In: Shirkov, D.V., Priezzhev, V.B. (eds.) Renormalization Group ‘91, Proc. of Second Intern. Conf., Sept. 1991, Dubna, USSR, pp. 1–10. World Scientific, Singapore (1992) Kovalev, V.F., Krivenko, S.V., Pustovalov, V.V.: The Renormalization group, method based on group analysis. In: Shirkov, D.V., Priezzhev, V.B. (eds.) Renormalization Group ‘91, Proc. of Second Intern. Conf., Sept. 1991, Dubna, USSR, pp. 300–314. World Scientific, Singapore (1992)

    Google Scholar 

  28. Kovalev, V.F., Pustovalov, V.V., Shirkov, D.V.: Group analysis and renormgroup symmetries. J. Math. Phys. 39, 1170–1188 (1998). Preprint hep-th/9706056

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Kovalev, V.F., Shirkov, D.V.: Bogoliubov renormalization group and symmetry of solution in mathematical physics. Phys. Rep. 352(4–6), 219 (2001). hep-th/0001210

    MathSciNet  ADS  MATH  Google Scholar 

  30. Kovalev, V.F., Shirkov, D.V.: The renormalization group symmetry for solution of integral equations. In: Nikitin, A.G. (ed.) Proc. of the 5th Intern. Conf. on Symmetry in Nonlinear Mathematical Physics, Kii’v, Ukraine, June 23–29, 2003. Proc. of the Inst. of Math. of the Natl. Acad. Sci. of Ukraine. Math. and its Appl., vol. 50, Pt. 2, pp. 850–861. Inst. of Math. of NAS Ukraine, Kiïv (2004)

    Google Scholar 

  31. Kovalev, V.F., Shirkov, D.V.: Renormgroup symmetry for functionals of boundary value problem solutions. J. Phys. A, Math. Gen. 39, 8061–8073 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Kovalev, V.F., Shirkov, D.V.: Renormalization-group symmetries for solutions of nonlinear boundary value problems. Phys.-Usp. 51(8), 815–830 (2008). Preprint arXiv:0812.4821 [math-ph]

    Article  ADS  Google Scholar 

  33. Shirkov, D.V.: Renormalization group, invariance principle and functional self-similarity. Sov. Phys. Dokl. 27, 197 (1982)

    ADS  Google Scholar 

  34. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  35. Rudenko, O.V., Soluyan, S.I.: Theoretical Foundations of Nonlinear Acoustics. Consultants Bureau, New York (1977)

    MATH  Google Scholar 

  36. Pustovalov, V.V., Silin, V.P.: Nonlinear theory of the interaction of waves in a plasma. In: Proceedings of P.N. Lebedev Physical Institute, AN USSR, vol. 61, pp. 42–283. Nauka, Moscow (1972). English translation in: Skobel’tsyn, D.V. (ed.) Theory of Plasmas. Consultants Bureau, New York (1975)

    Google Scholar 

  37. Maksimchuk, A., Flippo, K., Krause, H., et al.: High-energy ion generation by short laser pulses. Plasma Phys. Rep. 30(6), 473–495 (2004)

    Article  ADS  Google Scholar 

  38. Kovalev, V.F., Bychenkov, V.Yu: Analytic solutions to the Vlasov equations for expanding plasmas. Phys. Rev. Lett. 90(18), 185004 (2003) (4 pages)

    Article  ADS  Google Scholar 

  39. Bychenkov, V.Yu, Kovalev, V.F.: Coulomb explosion in a cluster plasma. Plas. Phys. Rep. 31(2), 178–183 (2005)

    Google Scholar 

  40. Bychenkov V.Yu., Kovalev, V.F.: On the maximum energy of ions in a disintegrating ultrathin foil irradiated by a high-power ultrashort laser pulse. Quantum Electron. 35(12), 1143–1145 (2005)

    Article  ADS  Google Scholar 

  41. Kovalev, V.F., Popov, K.I., Bychenkov, V.Yu., Rozmus, W.: Laser triggered Coulomb explosion of nanoscale symmetric targets. Phys. Plasmas 14, 053103 (2007) (10 pages)

    Article  ADS  Google Scholar 

  42. Kovalev, V.F., Pustovalov, V.V.: Group and renormgroup symmetry of a simple model for nonlinear phenomena in optics, gas dynamics and plasma theory. Math. Comput. Model. 25, 165–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: On the self-focusing and self-chanelling of intense laser beams in nonlinear medium. Sov. Phys. JETP 23(6), 1025–1033 (1966)

    ADS  Google Scholar 

  44. Murakami, M., Kang, Y.-G., Nishihara, K., et al.: Ion energy spectrum of expanding laser-plasma with limited mass. Phys. Plasmas 12, 062706 (2005) (8 pages)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii N. Grigoriev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grigoriev, Y.N., Ibragimov, N.H., Kovalev, V.F., Meleshko, S.V. (2010). Plasma Kinetic Theory: Vlasov–Maxwell and Related Equations. In: Symmetries of Integro-Differential Equations. Lecture Notes in Physics, vol 806. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3797-8_4

Download citation

Publish with us

Policies and ethics