Skip to main content

Nitrogen Balance of a Floodplain Forest of the Amazon River: The Role of Nitrogen Fixation

  • Chapter
  • First Online:
Amazonian Floodplain Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 210))

Abstract

The high biomass production in the várzea depends on a high supply of nitrogen, one of the most important macronutrients. There are three main paths for nitrogen to reach the floodplain. Nitrogen derives firstly from the water of the Amazon River when it inundates the floodplain during rising water, secondly from atmospheric deposition, and thirdly from biological N2 fixation (Kern and Darwich 1997). Atmospheric N2 is fixed in various ecotopes, primarily on high elevational ranges of the floodplain. At an elevational range of 22–25 m a.s.l. the forest under study is located on a ridge on Marchantaria Island. It is influenced by the water level of the Camaleão Lake, leading to an average inundation period between 4.7 and 7.6 months per year. In this most advanced successional stage of phytocoenoses, pathways of nitrogen input and output were studied next to Lake Camaleão on Marchantaria Island (Kreibich et al. 2006). This island is not affected hydrochemically by non-inundated upland (terra firme). Interpretation of the results are therefore restricted to exclusive white-water habitats of the central Amazon floodplain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen ON, Allen EK (1981) The Leguminosae – a source book of characteristics, uses and nodulation. Macmillan, Basingstoke, London

    Google Scholar 

  • Baillie IC (1989) Soil characteristics and classification in relation to the mineral nutrition of tropical wooded ecosystems. In: Proctor J (ed) Mineral nutrients in tropical forest and Savanna ecosystems. Blackwell Scientific, Oxford/London/Edinburgh, pp 15–26

    Google Scholar 

  • Barrios E, Herrera R (1994) Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification. J Trop Ecol 10:399–416

    Article  Google Scholar 

  • Bischoff W-A, Siemens J, Kaupenjohann M (1999) Solute leaching into groundwater – A comparison of field methods considering preferential flow. Wasser Boden 51(12):37–42

    CAS  Google Scholar 

  • Bollmann A, Conrad R (1998) Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob Change Biol 4:387–396

    Article  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182(20):5641–5652

    Article  PubMed  CAS  Google Scholar 

  • Cole DW (1995) Soil nutrient supply in natural and managed forests. Plant Soil 168(169):43–53

    Article  Google Scholar 

  • Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37:2173–2191

    Article  CAS  Google Scholar 

  • Cullmann J, Junk JW, Weber G, Schmitz GH (2006) The impact of seepage influx on cation content of a Central Amazonian floodplain lake. J Hydrol 328:297–305

    Article  CAS  Google Scholar 

  • Darwich A, Kern J, Robertson B, Souza E (2000) Decomposition of Echinochloa polystachya and its contribution to nutrient cycling in a Central Amazonian floodplain lake. Verh Internat Verein Limnol 27:2611–2614

    CAS  Google Scholar 

  • Dick J, Skiba U, Munro R, Deans D (2006) Effect of N-fixing and non N-fixing trees and crops on NO and N2O emissions from Senegalese soils. J Biogeogr 33:416–423

    Article  Google Scholar 

  • Doignon-Bourcier F, Sy A, Willems A, Torck U, Dreyfus B, Gillis M, de Lajudie P (1999) Diversity of bradyrhizobia from 27 tropical Leguminosae species native of Senegal. System Appl Microbiol 22(4):647–661

    Article  Google Scholar 

  • Doyle RD, Fisher TR (1994) Nitrogen fixation by periphyton and plankton on the Amazon floodplain at Lake Calado. Biogeochemistry 26:41–66

    Article  Google Scholar 

  • Engle DL, Melack JM (1993) Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnol Oceanogr 38:1500–1520

    Article  CAS  Google Scholar 

  • Fabian P, Kohlpaintner M, Rollenbeck R (2005) Biomass burning in the Amazon-fertilizer for the mountainous rain forest in Ecuador. Environ Sci Pollut Res 12:290–296

    Article  CAS  Google Scholar 

  • de Faria SM, Franco AA, de Jesus RM, de Menandro MS, Baitello JB, Mucci ESF, Döbereiner J, Sprent JI (1984) New nodulating legume trees from south-east Brazil. New Phytol 98:317–328

    Article  Google Scholar 

  • de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytol 111:607–619

    Article  Google Scholar 

  • de Faria SM, de Lima HC (1998) Additional studies of the nodulation status of legume species in Brazil. Plant Soil 200:185–192

    Article  Google Scholar 

  • Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Manage 90:59–87

    Article  Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Furch K (1999) Zur Biogeochemie eines charakteristischen Überschwemmungsgebietes Zentralamazoniens, der Várzea auf der Ilha de Marchantaria nahe Manaus, Brasilien. Habilitationsschrift, University of Hamburg, p 454

    Google Scholar 

  • Furch K, Klinge H (1989) Chemical relationships between vegetation, soil and water in contrasting inundation areas of Amazonia. In: Proctor J (ed) Mineral nutrients in tropical forest and Savanna ecosystems. Blackwell Scientific, Oxford/London/Edinburgh, pp 189–204

    Google Scholar 

  • Furch K, Junk WJ (1992) Nutrient dynamics of submersed decomposing Amazonian herbaceous plant species Paspalum fasciculatum and Echinochloa polystachya. Rev hydrobiol trop 25:75–85

    Google Scholar 

  • Garcia-Montiel DC, Melillo JM, Steudler PA, Tian H, Neill C, Kicklighter DW, Feigl B, Piccolo M, Cerri CC (2004) Emissions of N2O and CO2 from terra firme forests in Rondonia, Brazil. Ecol Appl 14:S214–S220

    Article  Google Scholar 

  • Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580

    Article  CAS  Google Scholar 

  • van den Graaf AA, Mulder A, de Bruijn P, Jetten MSM, Robertson LA, Kuenen JTG (1995) Anaerobic oxidation of annonium is a biologically mediated process. Appl Env Microb 61(4):1246–1251

    Google Scholar 

  • Grosse W, Armstrong J, Armstrong W (1996) A history of pressurised gas-flow studies in plants. Aquat Bot 54:87–100

    Article  Google Scholar 

  • Haaijer SCM, Lamers LPM, Smolders AJP, Jetten MSM, op den Camp HJM (2007) Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol J 24(5):391–401

    Article  CAS  Google Scholar 

  • Haase K, De Simone O, Junk WJ, Schmidt W (2003) Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Phys 23:1069–1076

    Article  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1996) Diversity of partial 16S rRNA sequences among and within strains of African rhizobia isolated from Acacia and Prosopis. Syst Appl Microbiol 19:352–359

    Article  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64(2):419–426

    PubMed  CAS  Google Scholar 

  • Högberg P (1990) 15N natural abundance as a possible marker for the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483–486

    Article  Google Scholar 

  • Högberg P, Alexander IJ (1995) Roles of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. J Ecol 83:217–224

    Article  Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schoonen K, Schalk J, van Dongen UGJM, van den Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Article  Google Scholar 

  • Jordan C, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R, Uhl C (1983) Nitrogen dynamics during conversion of primary Amazonian rain forest to slash and burn agriculture. Oikos 40:131–139

    Article  Google Scholar 

  • Jordan DC (1984) Family III. Rhizobiaceae Conn 1938, 321AL. In: Krieg NR, Holt JC (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore 1:234–254

    Google Scholar 

  • Junk WJ (1997b) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Studies 126:3–20. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Junk WJ, Soares MGM, Saint-Paul U (1997) The fish. In: Junk WJ (ed) The Central Amazon floodplain – ecology of a pulsing system. Springer, Berlin. Ecolog Stud 126:385–408

    Google Scholar 

  • Kern J (1995) Die Bedeutung der N2-Fixierung und der Denitrifikation für den Stickstoffhaushalt des amazonischen Überschwemmungssees Lago Camaleão. Ph.D. thesis, University of Hamburg, pp 178

    Google Scholar 

  • Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 119–135

    Chapter  Google Scholar 

  • Kern J, Darwich A (2003) The role of periphytic N2 fixation for stands of macrophytes in the whitewater floodplain (Várzea). Amazoniana 17:361–375

    Google Scholar 

  • Kern J, Darwich A, Furch K, Junk WJ (1996) Seasonal denitrification in flooded and exposed sediments from the Amazon floodplain at Lago Camaleão. Microb Ecol 32:47–57

    Article  PubMed  Google Scholar 

  • Kern J, Darwich A, Förstel H (2000) Studies on the role of N2 fixation in the floodplain forest in the Central Amazon. Verh Internat Verein Limnol 27:610–614

    CAS  Google Scholar 

  • Klinge H, Furch K, Harms E, Revilla J (1983) Foliar nutrient levels of native tree species from central Amazonia. 1 Inundation forests. Amazoniana 8:19–45

    Google Scholar 

  • Koschorreck M (2005) Nitrogen turnover in drying sediments of an Amazon floodplain lake. Microb Ecol 49:567–577

    Article  PubMed  CAS  Google Scholar 

  • Koschorreck M, Darwich A (2003) Nitrogen dynamics in seasonally flooded soils in the Amazon floodplain. Wetlands Ecol Manage 11:317–330

    Article  CAS  Google Scholar 

  • Kreibich H (2002) N2 fixation and denitrification in a floodplain forest in Central Amazonia, Brazil. Forschungsbericht Agrartechnik – VDI-MEG no. 398

    Google Scholar 

  • Kreibich H, Kern J (2003) Nitrogen fixation and denitrification in a floodplain forest near Manaus, Brazil. Hydrolog Process 17:1431–1441

    Article  Google Scholar 

  • Kreibich H, Kern J (2004) Forest biological resources in the Amazon basin. In: Werner D (ed) Biological resources and migration. Springer, Berlin/Heidelberg, pp 83–92

    Chapter  Google Scholar 

  • Kreibich H, Lehmann J, Scheufele G, Kern J (2003) Nitrogen availability and leaching during the terrestrial phase in a várzea forest of the Central Amazon floodplain. Biol Fert Soils 39:62–64

    Article  CAS  Google Scholar 

  • Kreibich H, Kern J, de Camargo PB, Moreira MZ, Victória RL, Werner D (2006) Estimation of symbiotic N2 fixation in an Amazon floodplain forest. Oecologia 147(2):359–368

    Article  PubMed  Google Scholar 

  • Lafay B, Burdon JJ (1998) Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern Australia. Appl Environ Microbiol 64(10):3989–3997

    PubMed  CAS  Google Scholar 

  • Lehmann J, Kaiser K, Peter I (2001) Resin cores for the estimation of nutrient fluxes in highly permeable tropical soil. J Plant Nutri Soil Sci 164:57–64

    Article  CAS  Google Scholar 

  • Lesack LFW, Melack JM (1991) The deposition, composition, and potential sources of major ionic solutes in rain of the Central Amazon Basin. Water Resources Res 27:2953–2977

    Article  CAS  Google Scholar 

  • Martinelli LA, Victoria RL, Trivelin PCO, Devol AH, Richey JE (1992) 15N Natural abundance in plants of the Amazon River floodplain and potential atmospheric N2 fixation. Oecologia 90:591–596

    Article  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, Mcdowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83

    CAS  Google Scholar 

  • Melack JM, Fisher TR (1988) Denitrification and nitrogen fixation in an Amazon floodplain lake. Verh Internat Verein Limnol 23:2232–2236

    CAS  Google Scholar 

  • Mertes LAK (1994) Rates of flood-plain sedimentation on the central Amazon River. Geology 22:171–174

    Article  Google Scholar 

  • Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in zentralamazonischen Überschwemmungswäldern- Igapó and Várzea. Ph.D. thesis, University of Hohenheim, Germany

    Google Scholar 

  • Meyer U, Junk WJ, Linck C (2010) Fine root systems and mycorrhizal associations in two central Amazonian floodplain forests – igapó and várzea. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • de Moreira FMS, da Silva MF, de Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570

    Article  Google Scholar 

  • de Moreira FMS, Gillis M, Pot B, Kersters K, Franco AA (1993) Characterisation of rhizobia isolated from different divergence groups of tropical Leguminosae by Comparative Polyacrylamide Gel Electrophoresis of their total proteins. System Appl Microb 16:135–146

    Article  Google Scholar 

  • de Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Molecul Ecol 7(7):889–895

    Article  CAS  Google Scholar 

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57:99–136

    Article  Google Scholar 

  • Neill C, Piccolo MC, Melillo JM, Steudler PA, Cerri CC (1999) Nitrogen dynamics in Amazon forest and pasture soils measured by 15N pool dilution. Soil Biol Biochem 31:567–572

    Article  CAS  Google Scholar 

  • Niner BM, Hirsch AM (1998) How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development and function? Symbiosis 24:51–102

    CAS  Google Scholar 

  • Norris DO (1965) Acid production by Rhizobium a unifying concept. Plant Soil 22(2):143–166

    Article  Google Scholar 

  • Norris DO (1969) Observation on the nodulation status of rainforest leguminous species in Amazonia and Guyana. Trop Agric 46:145–151

    Google Scholar 

  • Parolin P, Ferreira LV, Junk WJ (1998) Central Amazonia floodplains: effect of two water types on the wood density of trees. Verh Internat Verein Limnol 26:1106–1112

    Google Scholar 

  • Persson T, Rudebeck A, Jussy JH, Colin-Belgrand M, Priemé A, Dambrine E, Karlsson PS, Sjöberg RM (2000) Soil nitrogen turnover – mineralisation, nitrification and denitrification in European forest soils. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin/Heidelberg, pp 297–331

    Chapter  Google Scholar 

  • Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachia on the Amazon Floodplain. Ecology 72(4):1456–1463

    Article  Google Scholar 

  • de Ribeiro MNG, Adis J (1984) Local rainfall variability – a potential bias for bioecological studies in the central Amazon. Acta Amazonica 14:159–174

    Google Scholar 

  • Roggy JC, Prevost MF, Garbaye J, Domenach AM (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22

    Article  Google Scholar 

  • Salati E, Sylvester-Bradley R, Victoria RL (1982) Regional gains and losses of nitrogen in the Amazon basin. Plant Soil 67:367–376

    Article  CAS  Google Scholar 

  • Sangakkara UR, Hartwig UA, Nösberger J (1996) Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil 184:123–130

    Article  CAS  Google Scholar 

  • Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597

    Article  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plan 13:699–756

    CAS  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European J Soil Science 54:779–791

    Article  Google Scholar 

  • Sprent JI (1987) The ecology of the nitrogen cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Sprent JI (1995) Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biol Biochem 27(4/5):401–407

    Article  CAS  Google Scholar 

  • Sprent JI (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspect Plant Ecol Evolut System 2(2):149–162

    Article  Google Scholar 

  • Sylvester-Bradley R, de Oliveira LA, de Podestá Filho JA, John TVS (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillium spp. in representative soils of central Amazonia. Agro-Ecosystems 6:249–266

    Article  Google Scholar 

  • Thielen-Klinge A (1997) Rolle der biologischen N2-Fixierung von Baumleguminosen im östlichen Amazonasgebiet, Brasilien – Anwendung der 15N natural abundance Methode. Ph.D. thesis, University of Göttingen

    Google Scholar 

  • Tsai SM, Nodari RO, Moon DH, Camargo LEA, Vencovsky R, Gepts P (1998) QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant Soil 204(1):135–145

    Article  CAS  Google Scholar 

  • Vinuesa P, Rademaker JLW, de Bruijn FJ, Werner D (1998) Genotypic characterisation of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analyses of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting and partial 16S rDNA sequencing. Appl Environ Microbiol 64(6):2096–2104

    PubMed  CAS  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65(1):285–298

    Article  CAS  Google Scholar 

  • Whitmore TC (1998) An introduction to tropical rain forests, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Williams WM, Hoh CH, Lenz F, Broughton WJ (1988) Rhizobia in tropical legumes: environmental factors and the reduction of nitrogen. Soil Biol B 20:667–675

    Article  CAS  Google Scholar 

  • Worbes M (1985) Structural and other adaptations to longterm flooding by trees in Central Amazonia. Amazoniana 9:459–484

    Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:223–265. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. J Vegetat Sci 3:553–564

    Article  Google Scholar 

  • Yoneyama T, Muraoka T, Murakami T, Boonkerd N (1993) Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153:295–304

    Article  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kern, J., Kreibich, H., Koschorreck, M., Darwich, A. (2010). Nitrogen Balance of a Floodplain Forest of the Amazon River: The Role of Nitrogen Fixation. In: Junk, W., Piedade, M., Wittmann, F., Schöngart, J., Parolin, P. (eds) Amazonian Floodplain Forests. Ecological Studies, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8725-6_14

Download citation

Publish with us

Policies and ethics