Skip to main content

Genetic Variability, Divergence and Speciation in Trees of Periodically Flooded Forests of the Amazon: A Case Study of Himatanthus sucuuba (Spruce) Woodson

  • Chapter
  • First Online:
Amazonian Floodplain Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 210))

Abstract

Contrary to the theory that geographic isolation is the main trigger for speciation, recent studies emphasize the continuous adaptation to different habitats as the driving force initiating diversification. In this way, adaptive divergence in response to contrasting selective pressures of populations of the same species in geographically or ecologically continuous environments may occur if long-lasting barriers are induced by biotic or abiotic events. Plants of the Amazon floodplains withstand annual periods of flooding which can last seven months. To verify if the regularity of the “flood pulse” of the Amazon River can induce speciation, we investigated populations of Himatanthus sucuuba (Apocynaceae) colonizing whitewater floodplains (várzea) and non-flooded uplands (terra-firme) in the region. In independent experiments, we simulated flooding conditions, to evaluate the germination and growth of seedlings from both environments. The two populations showed significant differences for most parameters evaluated. Thus, flooding is apparently a feature strong enough to promote phenotypic differentiation among várzea and terra firme populations. Indeed, molecular analysis showed genetic difference between populations, revealing that different ecological pressures may promote adaptive changes in Amazonian plants to insure establishment in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benz RB, Rhode MJ, Cruzan BM (2007) Aerenchyma development and elevated alcohol dehydrogenase activity as alternative responses to hypoxic soils in the Piriqueta caroliniana complex. Am J Bot 94:542–550

    Article  PubMed  CAS  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evolut 22:148–155

    Article  Google Scholar 

  • Buckeridge MS, Santos HP, Tiné MA, Aidar MPM (2004) Mobilização de reservas. In: Ferreira AG, Borguetti F (eds) Acúmulo de reservas. Germinação: do básico ao aplicado. Porto Alegre, Ed. Artmed, pp 163–185

    Google Scholar 

  • Buckley DP, O’malley DM, Apsit V, Prance GT, Bawa KS (1988) Genetics of Brazil nut (Bertholletia excelsa Humb. and Bonpl.): Lecythidaceae). I Genetic variation in natural populations. Theor Appl Genet 76:923–928

    Article  Google Scholar 

  • Crawford RMM (1978) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, London, pp 119–136

    Google Scholar 

  • Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv in Ecol Res 23:93–185

    Article  CAS  Google Scholar 

  • Dick CW, Abdul-Salim K, Bermingham E (2003) Molecular systematics reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. Am Nat 160(12):691–703

    Article  Google Scholar 

  • Dick CW, Bermingham E, Lemes ML, Gribel R (2007) Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Molec Ecol 16:3039–3049

    Article  Google Scholar 

  • Dutech C, Maggia L, Joly HI (2000) Chloroplast diversity in Vouacapoua americana (Caesalpinaceae), a neotropical forest tree. Molec Ecol 9:1427–1432

    Article  CAS  Google Scholar 

  • Felsenstein J (1995) PHYLIP (Phylogeny Inference Package), Version 3.57c University of Washington

    Google Scholar 

  • Ferreira CS (2002) Germinação e adaptações metabólicas e morfo-anatômicas em plântulas de Himatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Unpubl Master Thesis, Universidade do Amazonas (UA), Instituto Nacional de Pesquisas da Amazônia (INPA), p 95

    Google Scholar 

  • Ferreira CS (2006) Aspectos morfo-anatômicos, bioquímicos e genéticos de de Himatanthus sucuuba, em ambiente de várzea e de terra firme da Bacia Amazônica. Ph.D. thesis, CAPES, INPA/UFAM, Manaus

    Google Scholar 

  • Ferreira CS, Piedade MTF, Bonates LC (2006) Germinação de sementes e sobrevivência de plântulas de Himatanthus sucuuba (Spruce) Wood. em resposta ao alagamento, nas várzeas da Amazônia Central. Acta Amazonica 36:413–418

    CAS  Google Scholar 

  • Ferreira CS, Piedade MTF, Junk WJ, Parolin P (2007) Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ Experiment Bot 60(3):477–483

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  PubMed  CAS  Google Scholar 

  • Gascon C, Malcolm JR, Patton JL, da Silva MNF, Bogard JP, Lougheed SC, Peres CA, Neckel S, Boag PT (2000) Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences, USA, vol 97, pp 13672–13677

    Google Scholar 

  • Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579–607

    Google Scholar 

  • Hall JPW, Harvey D (2002) The phylogeography of Amazonia revisited: new evidence from riodinid butterflies. Evolution 56(7):1489–1497

    PubMed  Google Scholar 

  • Hamrick JL, Loveless MD (1989) The genetic structure of tropical tree populations: associations with reproductive biology. In: Bock JH, Linhart YB (eds) The evolutionary biology of plants. Westview Press, Boulder, CO, pp 129–146

    Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. London, Academic Press, p 356

    Google Scholar 

  • Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29

    Google Scholar 

  • Lemes MR, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Molecul Ecol 12:2875–2883

    Article  Google Scholar 

  • Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in Neotropical tree species. Oecologia Brasiliensis 4:137–156

    Article  Google Scholar 

  • Loveless MD (1992) Isozyme variation in tropical trees: patterns of genetic organization. New Forests 5:1–28

    Google Scholar 

  • Novick RS, Dick CW, Lemes M, Navarro C, Caccone A, Bermingham E (2003) Genetic structure of Mesoamerican populations of big-leaf mahogany (Swietenia macrophylla) inferred by microsatellite analysis. Molecul Ecol 12:2885–2893

    Article  Google Scholar 

  • Parolin P (2001a) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335

    Article  Google Scholar 

  • Parolin P (2003) Extreme sites and diversity – an example from Amazonian floodplain forests. Botanica 53:23–34

    Google Scholar 

  • Pigliucci M, Kolodynska A (2002) Phenotypic plasticity and integration in response to flooded conditions in natural accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Annal Bot 90:199–207

    Article  Google Scholar 

  • Pires JM (1984) The Amazonian forest. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its basin. Junk, Dordrecht, pp 581–602

    Google Scholar 

  • Plumel MM (1991) Le genre Himatanthus (Apocynaceae). Révision taxonomique. Bradea 5:118

    Google Scholar 

  • Potomati A, Buckeridge MS (2002) Effect of abscisic acid on the mobilisation of galactomannan and embryo development of Sesbania virgata (Cav) Pers. (Leguminosae – Faboideae). Revista Brasileira de Botânica 25(3):303–310

    Google Scholar 

  • Price TD, Qvarnstrom A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London, series B, vol 270, pp 1433–1440

    Google Scholar 

  • Rieseberg LH, Wendel J (2004) Plant speciation – rise of the poor cousins. New Phytol 161(1):3–8

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecul Biol Evolut 4:406–425

    CAS  Google Scholar 

  • Smith TB, Schneider CJ, Holder K (2001) Refugial isolation versus ecological gradients. Genetica 112–113:383–398

    Article  PubMed  Google Scholar 

  • Souza MC (2006) Variações morfológicas, moleculares e fitoquímicas do complexo Geonoma maxima (Poit.) Kunth (Arecaceae) na Amazônia: elucidação de um problema taxonômico. Ph.D. thesis, CNPq, INPA/UFAM, Manaus

    Google Scholar 

  • Swofford DL (1998) PAUP* – Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Way H, Chapman S, McIntyre L, Casu R, Xue GP, Manners J, Shorter R (2005) Identification of differentially expressed genes in wheat undergoing gradual water deficit stress using a subtractive hybridisation approach. Plant Sci 168:661–670

    Article  CAS  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002b) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18:805–820

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (this volume) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Zhang ZX, Zou XL, Tang WH, Zheng YL (2005) Revelation on early response and molecular mechanism of submergence tolerance in maize roots by microarray and suppression subtractive hybridization. Environ Experimen Bot 58(1/3):53–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane S. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ferreira, C.S., Figueira, A.V.O., Gribel, R., Wittmann, F., Piedade, M.T.F. (2010). Genetic Variability, Divergence and Speciation in Trees of Periodically Flooded Forests of the Amazon: A Case Study of Himatanthus sucuuba (Spruce) Woodson. In: Junk, W., Piedade, M., Wittmann, F., Schöngart, J., Parolin, P. (eds) Amazonian Floodplain Forests. Ecological Studies, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8725-6_15

Download citation

Publish with us

Policies and ethics