Skip to main content

Abstract

In recent years ontologies have come to play an increasingly important role in the biomedical domain. Primary applications have been the formalisation of community knowledge in molecular biology, and the provision of a shared vocabulary for the annotation of the growing amount of biological data being generated. Ontologies now play a key role in the analysis and reporting of biological data and act as the basis for new biological services being hosted by various GRID projects. More formal methods from ontology theory are gradually being adopted, and have made the existing ontologies more robust. These approaches will continue to extend the number of potential applications for ontologies in the biomedical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ncbi.nlm.nih.gov/

  2. 2.

    http://en.wikipedia.org/wiki/Upper_ontology_(computer_science)

  3. 3.

    http://www.obofoundry.org/

  4. 4.

    http://www.obofoundry.org/

  5. 5.

    5 http://amigo.geneontology.org/

  6. 6.

    http://www.ebi.ac.uk/GOA

  7. 7.

    http://www.geneontology.org/GO.current.annotations.shtml

  8. 8.

    http://www.geneontology.org/GO.tools.shtml#annot

  9. 9.

    http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/

  10. 10.

    http://onto.eva.mpg.de/gfo-bio.html

  11. 11.

    http://onto.eva.mpg.de/gfo-bio.html

  12. 12.

    http://www.geneontology.org/GO.tools.shtml

  13. 13.

    http://func.eva.mpg.de/

  14. 14.

    http://www.hybrow.org/

References

  • Ashburner, M., et al. 2000. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics 25(1):25–29.

    Article  Google Scholar 

  • Bada, M., and L. Hunter. 2007. Enrichment of OBO ontologies. Journal of Biomedical Informatics 40(3):300–315.

    Article  Google Scholar 

  • Beissbarth, T., and T.P. Speed. 2004. GOstat: Find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465.

    Article  Google Scholar 

  • Bodenreider, O., et al. 2003. Evaluation of WordNet as a source of lay knowledge for molecular biology and genetic diseases: A feasibility study. Studies in Health Technology and Informatics 95:379–384.

    Google Scholar 

  • Boeckmann, B., et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31(1):365–370.

    Article  Google Scholar 

  • Burek, P., et al. 2006. A top-level ontology of functions and its application in the open biomedical ontologies. Bioinformatics 22(14):e66–e73.

    Article  Google Scholar 

  • Camon, E., et al. 2004. The gene ontology annotation (GOA) database: Sharing knowledge in uniprot with gene ontology. Nucleic Acids Research 32(Database issue):D262–D266.

    Article  Google Scholar 

  • Camon, E.B., et al. 2005. An evaluation of GO annotation retrieval for BioCreAtIvE and GOA. BMC Bioinformatics 6(Suppl 1):17.

    Article  Google Scholar 

  • Ceusters, W., et al. 2007. Negative findings in electronic health records and biomedical ontologies: A realist approach. . International Journal of Medical Informatics 76(Suppl 3):S326–S333.

    Article  Google Scholar 

  • Day-Richter, J., et al. 2007. OBO-edit – An ontology editor for biologists. Bioinformatics 23(16):2198–2200.

    Article  Google Scholar 

  • Eiter, T., et al. 2006. Dlvhex: A system for integrating multiple semantics in an answer-set programming framework. Proceedings 20th Workshop on Logic Programming and Constraint Systems (WLP 06).

    Google Scholar 

  • Field, D., et al. 2006. Meeting report: eGenomics: Cataloguing our complete genome collection II. OMICS: A Journal of Integrative Biology 10(2):100–104.

    Article  Google Scholar 

  • Giles, J. 2007. Key biology databases go wiki. Nature 445(7129): 691.

    Article  Google Scholar 

  • Golbreich, C., and I. Horrocks. 2007. The OBO to OWL mapping, go to OWL 1.1! Proceedings of OWL-ED 2007.

    Google Scholar 

  • Grenon, P. 2003. BFO in a nutshell: A bi-categorial axiomatization of BFO and comparison with DOLCE.

    Google Scholar 

  • Grenon, P., et al. 2004. Biodynamic ontology: Applying BFO in the biomedical domain. Studies in Health Technology and Informatics 102:20–38.

    Google Scholar 

  • Harris, M.A., et al. 2004. The gene ontology (GO) database and informatics resource. Nucleic Acids Research 32(Database issue):D258–D261.

    Google Scholar 

  • Herre, H., et al. General formal ontology (GFO): A foundational ontology integrating objects and processes. Part I: Basic principles.

    Google Scholar 

  • Hirschman, L., et al. 2005. Overview of BioCreAtIvE: Critical assessment of information extraction for biology. BMC Bioinformatics 6(Suppl 1):S1.

    Article  Google Scholar 

  • Hoehndorf, R., et al. 2006. A proposal for a gene functions Wiki. On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, 669–678.

    Google Scholar 

  • Karp, P.D., et al. 2005. Expansion of the bioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 33(19): 6083–6089.

    Article  Google Scholar 

  • Kelso, J., et al. 2003. eVOC: A controlled vocabulary for unifying gene expression data. Genome Research 13(6A):1222–1230.

    Article  Google Scholar 

  • Kim, J.D., et al. 2003. GENIA corpus-semantically annotated corpus for bio-textmining. Bioinformatics 19 Suppl 1:i180–i182.

    Article  Google Scholar 

  • Kumar, A., and B. Smith. 2004. Enhancing GO for the sake of clinical bioinformatics. Proceedings of Bio-Ontologies Workshop.

    Google Scholar 

  • Kumar, A., et al. 2003. The unified medical language system and the gene ontology: Some Critical Reflections. KI2003: Advances in AI: 135–148.

    Google Scholar 

  • Leuf, B., and W. Cunningham. 2001. The wiki way: Quick collaboration on the web. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Lewis, S. E. 2005. Gene ontology: Looking backwards and forwards. Genome Biology 6(1):103.

    Article  Google Scholar 

  • Lockhart, D.J., and E.A. Winzeler. 2000. Genomics, gene expression and DNA arrays. Nature 405(6788):827–36.

    Article  Google Scholar 

  • Loebe, F. 2005. Abstract vs. social roles: A refined top-level ontological analysis. Proceedings of the 2005 AAAI fall symposium roles, An Interdisciplinary Perspective: Ontologies, Languages, and Multiagent Systems’, AAAI.

    Google Scholar 

  • Manly, K.F., D. Nettleton, et al. 2004. Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Research 14(6):997–1001.

    Article  Google Scholar 

  • Masolo, C., et al. 2003. Wonderweb deliverable D17. The WonderWeb Library of Foundational Ontologies and the DOLCE ontology.

    Google Scholar 

  • Maturana, H.R., and F.J. Varela. 1991. Autopoiesis and cognition: Realization of the living (Boston studies in the philosophy of science). Berlin: Springer.

    Google Scholar 

  • McGuinness, D.L., and V.H., Frank. 2004. OWL web ontology language overview.

    Google Scholar 

  • Noy, N.F., et al. 2003. Protege-2000: An open-source ontology-development and knowledge-acquisition environment. AMIA Annual Symposium Proceedings: 953.

    Google Scholar 

  • Pruefer, K., et al. 2007. FUNC: A package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8:41.

    Article  Google Scholar 

  • Prufer, K., et al. 2007. FUNC: A package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8:41.

    Article  Google Scholar 

  • Racunas, S.A., et al. 2004. HyBrow: A prototype system for computer-aided hypothesis evaluation. Bioinformatics 20(Suppl 1):i257–i264.

    Article  Google Scholar 

  • Rector, A.L., and W.A. Nowlan. 1994. The GALEN project. Computer Methods and Programs in Biomedicine 45(1–2):75–78.

    Article  Google Scholar 

  • Rosse, C., and J.L. Mejino, Jr. 2003. A reference ontology for biomedical informatics: The foundational model of anatomy. Journal of biomedical informatics 36(6):478–500.

    Article  Google Scholar 

  • Schulz, S., et al. 2006. Towards an upper level ontology for molecular biology. AMIA Annual Symposium Proceedings: 694–698.

    Google Scholar 

  • Schulze-Kremer, S. 1998. Ontologies for molecular biology. Pacific Symposium on Biocomputing 3:695.

    Google Scholar 

  • Schulze-Kremer, S. 2002. Ontologies for molecular biology and bioinformatics. In Silico Biology 2(3):179–193.

    Google Scholar 

  • Smith, B., et al. 2003. The ontology of the gene ontology.

    Google Scholar 

  • Smith, B., et al. 2004. On the application of formal principles to life science data: A case study in the gene ontology. Proceedings of DILS 2004 (Data Integration in the Life Sciences), Springer.

    Google Scholar 

  • Smith, B., et al. 2005. Relations in biomedical ontologies. Genome Biology 6(5):R46.

    Article  Google Scholar 

  • Smith, C.L., et al. 2005. The mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biology 6(1):R7.

    Article  Google Scholar 

  • Soldatova, L.N., and R.D. King. 2006. An ontology of scientific experiments. Journal of the Royal Society Interface 3(11):795–803.

    Article  Google Scholar 

  • Soldatova, L.N., et al. 2006. An ontology for a robot scientist. Bioinformatics 22(14):e464–e471.

    Article  Google Scholar 

  • Wang, K. 2006. Gene-function wiki would let biologists pool worldwide resources. Nature 439(7076):534.

    Article  Google Scholar 

  • Wheeler, D.L., et al. 2003. Database resources of the national center for biotechnology. Nucleic Acids Research 31(1):28.

    Article  Google Scholar 

  • Whetzel, P.L., et al. 2006. The MGED ontology: A resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873.

    Article  Google Scholar 

  • Wolstencroft, K., et al. 2006. Protein classification using ontology classification. Bioinformatics 22(14):e530–e538.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janet Kelso or Robert Hoehndorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kelso, J., Hoehndorf, R., Prüfer, K. (2010). Ontologies in Biology. In: Poli, R., Healy, M., Kameas, A. (eds) Theory and Applications of Ontology: Computer Applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8847-5_15

Download citation

Publish with us

Policies and ethics