Skip to main content

Biochemical and Molecular Aspects in Phytoremediation of Selenium

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

The element selenium (Se) is considered a finite and non-renewable resource on earth, and has been found to be an essential element in humans, animals, micro-organisms and some other eukaryotes; but as yet its essentiality to plants is in dispute. There is no doubt that adequate levels of selenium are important to animal and human health, and some selenium compounds have been found to be active against cancers. A limited number of plants growing on selenium rich soils can accumulate very high levels of selenium (i.e., hyperaccumulate selenium), and are classified as selenium tolerant, however, many more plants do not accumulate selenium to any great extent, and are selenium sensitive. Plants vary considerably in their physiological and biochemical response to selenium, and a revision of the physiological responses of plants to selenium is presented; especially growth, uptake, transport and interaction of selenium with other minerals. The review also details the biochemical responses of plants to selenium, the assimilation of selenium in plants and possible incorporation into proteins. Molecular approaches to understanding selenium toxicity and tolerance have increased the knowledge of mechanisms of action, and the molecular biology of selenium in transgenic plants is detailed; with special reference to the similarity with sulphur metabolism, sulphur/selenium transporters and important assimilation enzymes. Phytovolatilisation of selenium will be summarised, which is a unique method for plants to metabolise selenium to more volatile forms in order to eliminate selenium from tissues, and eventually from the soil and water. Finally, the application of phytoremediation in selenium rich environments is reviewed in light of the possible use of plants to decontaminate selenium from soil and water environments, and perhaps also produce a product which could be used in mineral supplementation of foods, and even fighting cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

adenosine 5’-phosphosulphate

APSe:

adenosine 5’-phosphoselenate

Cys:

cysteine

Cysth:

cystathione

DMS:

dimethylsulphide

DMSP:

dimethylproprionate

DMSe:

dimethylselenide

DMDSe:

dimethyldiselenide

DMSeP:

dimethylselenioproprionate

GPX:

glutathione peroxidase

GSH:

glutathione

GSSeSG:

selenodiglutathione

HAST:

high affinity sulphate transporter

LAST:

low affinity sulphate transporter

MeCys:

S-methylcysteine

MeSeCys:

S-methylselenocysteine

MeSeCysSeO:

methylselenocysteine seleno-oxide

Met:

methionine

S:

sulphur

Se:

selenium

SeCys:

selenocysteine

Secysth:

selenocystathione

SeGSH:

selenoglutathione

Sehocys:

selenohomocysteine

SEM:

SeCys + MeSeCys

SeMet:

selenomethionine

SeMMet:

selenomethylmethionine

References

  • Abrams MM, Shennan C, Zazoski J, Burau RG (1990) Selenomethionine uptake by wheat seedlings. Agron J 82:1127–1130

    Article  CAS  Google Scholar 

  • Agalou A, Roussis A, Spaink HP (2005) The Arabidopsis selenium-binding protein confers resistance to toxic levels of selenium. Funct Plant Biol 31:881–890

    Article  Google Scholar 

  • Anderson JW (1993) Selenium interactions in sulphur metabolism. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulphur nutrition and assimilation in higher plants: Regulatory agricultural and environmental aspects. Academic, The Hague

    Google Scholar 

  • Anderson JW, Scarf AR (1983) Selenium and plant metabolism. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilisation by plants. Academic, London

    Google Scholar 

  • Arvy MP (1997) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087

    Article  Google Scholar 

  • Asher CJ, Butler GW, Peterson PJ (1977) Selenium transport in root systems of tomato. J Exp Bot 28:279–291

    Article  CAS  Google Scholar 

  • Aslam M, Harbit KB, Huffaker RC (1990) Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant Cell Environ 13:773–782

    Article  PubMed  CAS  Google Scholar 

  • Axley MJ, Boeck A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulphur replaces selenium. Proc Natl Acad Sci USA 88:8450–8454

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton

    Google Scholar 

  • Banuelos GS, Terry N, Zayed A, Wu L (1995) Managing high soil selenium with phytoremediation, Proc Annu Natl Meet Am Soc Surf Min Reclam, Gillette, WY

    Google Scholar 

  • Banuelos GS (2001) The green technology of selenium phytoremediation. Biofactors 14:255–260

    Article  PubMed  CAS  Google Scholar 

  • Banuelos GS, Vickerman DB, Trumble JT, Shannon MC, Davis CD, Finley JW, Mayland HF (2002) Biotransfer possibilities of selenium from plants used in phytoremediation. Inter J Phytoremed 4:315–331

    Article  CAS  Google Scholar 

  • Banuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23

    Article  PubMed  CAS  Google Scholar 

  • Banuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenoctsteine lyase or selenocysteine methyltransferase exibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Bell PF, Parker DR, Page AL (1992) Contrasting selenate sulphate interactions in selenium-accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56:1818–1824

    Article  CAS  Google Scholar 

  • Berken A, Mulholland MM, LeDuc DL, Terry, N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    Article  CAS  Google Scholar 

  • Berry MJ, Kieffer JD, Harney JW, Larsen PR (1991) Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem 266:14155–14158

    PubMed  CAS  Google Scholar 

  • Berry MJ, Tujebajawa RM, Copeland PR, Xu XM, Carlson BA, Martin GW, Low SC, Mansell JB, Grundner-Culemann E, Harney JW, Driscoll DM, Hatfield DL (2001) Selenocysteine incorporation directed from the 3’UTR: Characterisation of eukaryotic EFsec and mechanistic implications. Biofactors 14:17–24

    Article  PubMed  CAS  Google Scholar 

  • Birringer M, Pilawa S, Flohe I (2002) Trends in selenium biochemistry. Nat Prod Rep 19: 693–718

    Article  PubMed  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: MerB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813

    Article  PubMed  CAS  Google Scholar 

  • Boek A, Forshhammer K, Heider J, Baron C (1991) Selenoprotein synthesis an expansion of the genetic code. Biochem Sci 16:463–467

    Article  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fischer DB, Tarczynski MC, Li C, Herschback C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulphur transport and is synthesised by a novel type of methyltransferase. Plant Cell 11:1485–1497

    PubMed  CAS  Google Scholar 

  • Boyd RS (2007) The defence hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant Soil 293:153–176

    Article  CAS  Google Scholar 

  • Brady JM, Tobin JM, Gadd GM (1996) Volatilisation of selenite in aqueous medium by a Penicillium species. Mycol Res 100:955–961

    Article  CAS  Google Scholar 

  • Breton A, Surdin-Kerjan Y (1977) Sulphate uptake in Saccharomyces cerevisiae: Biochemical and genetic study. J Bacteriol 132:224–232

    PubMed  CAS  Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55: 321–336

    Article  PubMed  CAS  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao F-J, Breward N, Harriman M Tucker M (2007) Biofortification of UK food crops with selenium. Proc Nut Soc 65:169–181

    Article  CAS  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins in selenium tolerant Astragalus species. Plant Physiol 67:1951–1953

    Article  Google Scholar 

  • Broyer TC, Lee DC, Asher CJ (1966) Selenium nutrition of green plants. Effects of selenite supply on growth and selenium content of alfalfa and subterranean clover. Plant Physiol 41: 1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Broyer TC, Lee DC, Asher CJ (1972) Selenium and nutrition of Astragalus. I. Effect of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649

    Article  CAS  Google Scholar 

  • Bruhl A, Haverkamp T, Gisselmann G, Schwenn JD (1996) cDNA clone from Arabidopsis thaliana encoding plastidic ferredoxin: sulphite reductase. Biochem Biophys Acta 1295:119–124

    Article  PubMed  CAS  Google Scholar 

  • Burnell JN (1981) Selenium metabolism in Neptunia amplexicaulis. Plant Physiol 63:1095–1097

    Article  Google Scholar 

  • Chasteen TG, Bentley R (2002) Biomethylation of selenium and tellurium: Microorganisms and plants. Chem Rev 103:1–25

    Article  CAS  Google Scholar 

  • Cherest H, Davidian J-C, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular charecterisation of two high affinity sulphate transporters in Saccharomyces cervisiae. Genetics 145:627–635

    PubMed  CAS  Google Scholar 

  • Clarkson DT, Luttge U (1991) Mineral nutrition: Inducible and repressable nutrient transport systems. Prog Bot 52:61–83

    Article  Google Scholar 

  • Combs GF Jr (2005) Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr 135:343–347

    PubMed  CAS  Google Scholar 

  • Davidian J-C, Hatzfield Y, Cathala N, Tagmount A Vidmar JJ (2000) Sulphate uptake and transport in plants. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidson J-C (eds) Sulphur nutrition and sulphur assimilation in higher plants: Molecular, biochemical and physiological aspects. Paul Haupt, Bern

    Google Scholar 

  • De Filippis LF (1979) The effects of sub-lethal concentrations of mercury and zinc on Chlorella. V. The counteraction of metal toxicity by selenium and sulphydryl compounds. Z. Pflanzenphysiol 93:63–68

    Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Terry N (1999) The physiology and biochemistry of selenium volatilisation by plants. In: Ruskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York

    Google Scholar 

  • De Souza MP, Terry N (1997) Selenium volatilisation by rhizosphere bacteria. Abstr Gen Meet Am Soc Microbiol 97:499

    Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Duckart EC, Waldron IJ, Donner HE (1992) Selenium uptake and volatilisation from plants growing in soil. Soil Sci 153:94–99

    Article  CAS  Google Scholar 

  • Dutilleul C, Jourdain A, Bourguignon J, Hugouvieux V (2008) The Arabidopsis putative selenium-binding protein family: Expression study and characterisation of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol 147:239–251

    Article  PubMed  CAS  Google Scholar 

  • El Bayoumy K, Sinha R (2005) Molecular chemoprevention by selenium: A genetic approach. Mut Res 591:224–236

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  PubMed  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–12

    Article  PubMed  Google Scholar 

  • Ernst WHO (1982) Selenpflanzen (Selenophyten). In: Kinzel H (eds) Pflanzenokologie und mineralstoffwechsel. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997) Plant glutathione peroxidases. Physiol Plant 100:234–240

    Article  CAS  Google Scholar 

  • Eustice DC, Foster I, Kull FJ, Shrift A (1980) In vivo incorporation of selenomethionine into proteins by Vigna radiata polysomes. Plant Physiol 66:182–186

    Article  PubMed  CAS  Google Scholar 

  • Eustice DC, Kull FJ, Shrift A (1981) Selenium toxicity: Aminoacylation and peptide bond formation with selenomethionine. Plant Physiol 67:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Fan TW-M, Lane AN, Higashi RM (1997) Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond. Environ Sci Technol 31:569–576

    Article  CAS  Google Scholar 

  • Finley JW (2005) Selenium accumulation in plant foods. Nut Rev 63:196–202

    Article  Google Scholar 

  • Forshhammer K, Boek A (1991) Biology and biochemistry of the element selenium. Naturwissenschaften 78:497–504

    Article  Google Scholar 

  • Foyer C H, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of Se in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Lindblom SD, Quinn CE, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol 175:490–500

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J Bot 96:1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuation of selenium and sulphur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1980) Sulphur amino acids in plants. In: Miflin BJ (ed) Sulphur amino acids in plants. Academic, New York

    Google Scholar 

  • Goutierrey-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encoded proteins with a thioredoxin-like domain and ‘APS reductase’ activity. Proc Natl Acad Sci USA 93:13377–13382

    Article  Google Scholar 

  • Hanson AD, Rivoal J, Paquet L, Gage DA (1994) Biosynthesis of 3-dimethylsulphonioproprionate in Wollastonia biflora (L.) DC: Evidence that S-methylmethionine is an intermediate. Plant Physiol 105:103–110

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Trossat C, Nolte KD, Gage DA (1997) 3-dimethylsulphonioproprionate biosynthesis in higher plants. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulphur nutrition and assimilation in higher plants: Regulatory agricultural and environmental aspects. Leiden, Backhuys

    Google Scholar 

  • Hartikainan H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  Google Scholar 

  • Hatfield D, Choi IS, Mischke S, Owens LD (1992) Selenocysteinyl-tRNAs recognise UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Commun 184:254–259

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Cathala N, Grignon C, Davidian JC (1998) Effect of ATP sulphurylase overexpression in bright yellow 2 tobacco cells. Plant Physiol 116:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228

    Article  PubMed  CAS  Google Scholar 

  • Huang ZZ, Wu L (1991) Species richness and selenium accumulation of plants in soils with elevated concentrations of selenium and salinity. Ecotoxicol Environ Safet 22:251–266

    Article  CAS  Google Scholar 

  • James F, Paquet L, Sparace SA, Gage DA, Hanson AD (1995) Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfonioproprionate biosynthesis. Plant Physiol 108:1439–1448

    Google Scholar 

  • Kim J, Leustek T (1996) Cloning and analysis of the gene for cystathionine gamma-synthase from Arabidopsis thaliana. Plant Mol Biol 32:1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Le Duc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel-Samie M, Chiang CY, Tagmount A, De Souza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  Google Scholar 

  • Lefsrud MG, Kopsell DA, Kopsell DE, Randle WM (2006) Kale carotenoids are unaffected, whereas biomass production, elemental concentration, and selenium accumulation respond to, changes in selenium fertility. Agric Food Chem 54:1764–1771

    Article  CAS  Google Scholar 

  • Lemly AD (1997) Environmental implications of excessive selenium: A review. Biomed Environ Sci 10:415–435

    PubMed  CAS  Google Scholar 

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Murillo M, Cervantes M (1994) Cloning of a cDNA encoding ATP sulphurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105:897–902

    Article  PubMed  CAS  Google Scholar 

  • Losi ME, Frankenberger WT Jr, (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: Isolation and growth of the bacterium and its expulsion of selenium particles. Appl Envirn Microbiol 63:3079–3084

    CAS  Google Scholar 

  • Lydiate D, Higgins E, Robinson S, Korbas M, Yang SI, Pickering I (2007) Selenium acquisition by Arabidopsis plants. Can Light Source 27:106–107

    Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (1995) Molecular and biochemical characterisation of the selenocysteine Se-methyltransferase gene and Se-methyl-selenocyeteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation - prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Martens DA, Suarez DL (1997) Mineralisation of selenium-containing amino acids in two California soils. Soil Sci Soc Amer J 61:1685–1694

    Article  Google Scholar 

  • Mayland HF, James LF, Panter KE, Sonderegger JL (1989) Selenium in seleniferous environments. In: Jacobs IW (ed) Selenium in agriculture and the environment. Am Soc Agron, Madison

    Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. Int Potash Inst, Bern

    Google Scholar 

  • Mikkelson RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. Soil Sci Soc Am Spec Publ 23:65–94

    Google Scholar 

  • Mugesh G, Du Mont W-W, Sies H (2002) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101:2125–2179

    Article  CAS  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Boeck A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases: Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  PubMed  CAS  Google Scholar 

  • Ng BH, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochem 18:573–580

    Article  CAS  Google Scholar 

  • Nigam SN, Tu J-I, McConnell WB (1969) Distribution of selenomethylselenocysteine and some other amino acids in species of Astragalus, with special reference to their distribution during the growth of A. bisulcatus Phytochem 8:1161–1165

    Article  CAS  Google Scholar 

  • Nyberg S (1991) Multiple use of plants: Studies on selenium incorporation in some agricultural species for the production of organic selenium compounds. Plant Foods Human Nutr 41:69–88

    Article  CAS  Google Scholar 

  • Ohlendorf HM, Hoffman DJ, Saiki MK, Aldrich nTW (1986) Embryonic mortality and abnormalities of aquatic birds: Apparent impacts of selenium from irrigation drain water. Sci Total Environ 52:49–63

    Article  CAS  Google Scholar 

  • Parker DR, Page AL, Thomason DN (1991) Salinity and boron tolerances of candidate plants for the removal of selenium from soils. J Environ Qual 20:157–164

    Article  CAS  Google Scholar 

  • Pedrero Z, Yolanda M, Carmen C (2006) Selenium species bioaccessibility in enriched raddish (Raphanus sativa). A potential dietary source of selenium. J Agric Food Chem 54:2412–2417

    Article  PubMed  CAS  Google Scholar 

  • Peterson PJ, Robinson PJ (1972) Cystathionine and its selenium analogue in Neptunia amplexicaulis. Phytochem 11:1837–1839

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulphurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  PubMed  CAS  Google Scholar 

  • Rael RM, Frankenberger WTJ (1996) Influence of pH, salinity, and selenium on ther growth of Aeromonas veronii in evaporation agricultural drainage water. Water Resour 30:422–430

    CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL (2001) Mercury detoxification with transgenic plants and other biotechchnological breakthroughs for phytoremediation. In Vitro Cell Dev Biol Plant 37:321–325

    Article  CAS  Google Scholar 

  • Rugh CL (2004) Genetically engineered phytoremediation: One man’s trash is another man’s transgene. Trend Biotech 22:496–498

    Article  CAS  Google Scholar 

  • Sabeh F, Wright T, Norton SJ (1993) Purification and charecterisation of a glutathione peroxidase from the Aloe vera plant. Enzyme Prot 47:92–98

    CAS  Google Scholar 

  • Saiki MK, Lowe TP (1987) Selenium in aquatic organisms from subsurface agricultural drainage water, San Joaquin valley, California. Arch Environ Contam Toxicol 19:496–499

    Google Scholar 

  • Saito K, Takahashi H, Noji M, Inoue K, Hatzfeld Y (2000) Molecular regulation of sulphur assimilation and cysteine synthesis. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidson J-C (eds) Sulphur nutrition and sulphur assimilation in higher plants: Molecular, biochemical and physiological aspects. Paul Haupt, Bern

    Google Scholar 

  • Setya A, Murillo M, Leustek T (1996) Sulphate reduction in higher plants: Molecular evidence for a novel 5’-adenylsulphate reductase. Proc Natl Acad Sci USA 93:13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Kumar A, Prakash R, Prakash NT (2007) Selenium accumulation and Se-induced anti-oxidant activity in Allium cepa. Environ Info Arch 5:328–336

    Google Scholar 

  • Sharma N, Prakash R, Srivastava A, Sadana US, Acharya R, Prakash NT, Reddy AVR (2009) Profile of selenium in soil and crops in seleniferous area of Punjab, India by neutron activation analysis. J Radioanal Nucl Chem 281:59–62

    Article  CAS  Google Scholar 

  • Sharmasarkar S, Vance GF (2002) Soil and plant selenium at a reclaimed uranium mine. J Environ Qual 31:1516–1521

    Article  PubMed  CAS  Google Scholar 

  • Shaw WH, Anderson JW (1972) Purification, properties and substrate specificity of adenosine triphosphate sulphurylase from spinach leaf tissue. Biochem J 127:237–247

    PubMed  CAS  Google Scholar 

  • Shrift A (1969) Aspects of selenium metabolism in higher plants, Annu Rev Plant Physiol 20: 475–494

    Article  CAS  Google Scholar 

  • Shrift A, Ulrich JM (1976) Transport of selenate and selenite into Astragalus roots. Plant Physiol 44:893–896

    Article  Google Scholar 

  • Smith FW, Hawkesford MJ, Prosser IM, Clarkson DT (1995) Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet 247:709–715

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Berg PJV (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12:875–884

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005a) Analysis of sulphur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–128

    Article  PubMed  CAS  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmoic acid signalling regulates selenite resistance in Arabidopsis. Plant Physiol 146:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilisation amongst crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Terry N (1998) Use of flow-through constructed wetlands for the remediation of selenium in agricultural tile drainage water, Tech Progr Rep Salin Drain Res Prog, Univ Calif, Berkely

    Google Scholar 

  • Terry N, Lin ZQ (1999) Managing high selenium in agricultural drainage water by agroforestry systems: Role of selenium volatilisation, Rep Calif State Dep Water Resourc, Sacramento

    Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT Jr, Karlson U (1989) Volatilisation of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413

    PubMed  CAS  Google Scholar 

  • Turner WL, Pallett KE, Lea PJ (1998) Cystathionine beta-lyase from Echinochloa colonum tissue culture. Phytochem 47:189–196

    Article  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K Inoue E, Pilon M, Takahashi H (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  CAS  Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilisation in Brassica juncea. Planta 218:71–78

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic indian mustard overexpressing ATP sulphurylase or cystathionine-gamma-synthase. Int J Phyto 6:111–118

    Article  CAS  Google Scholar 

  • Wang Y, Boeck A, Neuhierl B (1999) Acquisition of selenium tolerance by a selenium non-accumulating Astragalus species via selection. Biofactors 9:3–10

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am College Nutr 21:223–232

    CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spacklen WP, Spiby RE, Meachan MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulphur ratios define Se-accumulator plants. Ann Bot 96:1–8

    CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Huang ZZ (1991) Chloride and sulphate salinity effects on selenium accumulation by tall fescue. Crop Sci 31:114–118

    Article  CAS  Google Scholar 

  • Wu L, Huang ZZ, Burau RG (1988) Selenium accumulation and selenium-salt co-tolerance in five grass species. Crop Sci 28:517–522

    Article  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269

    Article  PubMed  CAS  Google Scholar 

  • Yokata A, Shigeoka S, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low carbon dioxide grown Chlamydomonas reinhardii. Plant Physiol 86:649–651

    Article  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilisation of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zayed AM, Pilon-Smits EAH, De Souza MP, Lin ZQ, Terry N (1999) Remediation of selenium-polluted soils and waters by phytovolatilisation. In: Terry N, Banuelos G (eds) Phytoremediation of metal-contaminated water and soils. CRC Press, Boca Raton

    Google Scholar 

  • Zeibur NK, Schrift A (1971) Response to selenium by callus cultures derived from Astragalus species. Plant Physiol 47:545–550

    Article  Google Scholar 

  • Zhang LH, Byrne PF, Pilon-Smits EAH (2006) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42

    Article  PubMed  CAS  Google Scholar 

  • Zhang LH, Ackley AR, Pilon-Smits EAH (2007) Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. J Plant Physiol 164:327–336

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, McGrath S, Gray C, Lopez-Bellido J (2007) Selenium concentrations in UK wheat and biofortification strategies. Comp Biochem Physiol (A) 146:S246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.F. De Filippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Filippis, L. (2010). Biochemical and Molecular Aspects in Phytoremediation of Selenium. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_10

Download citation

Publish with us

Policies and ethics