Skip to main content

Perspective on Phytoremediation for Improving Heavy Metal-Contaminated Soils

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Heavy metal pollution of soil is a significant environmental problem and has its negative potential impact on human health and agriculture. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria (for example, mycorrhizae) have received more and more attention. Some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment. A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities, which allow plants to survive under metal-containing soil environments. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, disadvantages, possible mechanisms, current status and future directions of phytoremediation for heavy metal contaminated soils and environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aina R, Labra M, Fumagalli P (2007) Thiol-peptide level and proteomic changes in response to cadmium in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Banuelos G, LeDuc DL, Pilon-Smits EA, Terry N (2007) Transgenic Indian mustard over-expressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147: 155–169

    Article  CAS  Google Scholar 

  • Bauer P, Bereczky Z (2003) Gene networks involved in iron acquisition strategies in plants. Agronomie 23:447–454

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Env Qual 32:432–440

    CAS  Google Scholar 

  • Bergmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opinion Plant Biol 9:515–522

    Article  Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theo Appl Gene 99:761–771

    Article  CAS  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Ann Rev Plant Biol 54:183–206

    Article  CAS  Google Scholar 

  • Cobbett C (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Tren Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Datta R, Sarkar D (2004) Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: An overview. Environ Geo 11:53–63

    Article  Google Scholar 

  • Deckert J (2008) Modulation of gene expression in plants exposed to heavy metals. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 125–138

    Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445 Basic Biotechnol 3:1–5

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol doi: 10.1111/j.1469-8137.2008.02446.x.A

    Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nature Biotechnol 20: 1094–1095

    Article  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opinion Plant Biol 7:512–520

    Article  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93: 5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Elizabeth PS (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39

    Article  Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Ann Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  CAS  Google Scholar 

  • Fayiga AO, Ma LQ, Cao RX, Rathinasabapathi DB (2004) Effects of Cd, Ni, Zn, and Pb on plant growth and arsenic uptake of hyperaccumulator Pteris vittatain a contaminated soil. Environ Poll 132:289–296

    Article  CAS  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2006) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Article  Google Scholar 

  • Fujita M, FujitaY, Noutoshi Y (2006) Crosstalk between abiotic and biotic stress responses: A current view from the point of convergence in the stress signaling network. Curr Opinion Plant Biol 9:436–442

    Article  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Gleba D, Borirjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra, S, Gleba, YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96: 5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: Species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooljs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatin production to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155:219–225

    Article  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase. Environ Toxicol Chem 24:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Lindblom SD, Abdel-Ghany S, Hanson BR, Hwang S, Terry N, Pilon-Smits EA (2006) Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation. J Environ Qual 35:726–733

    Article  PubMed  CAS  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Poll 144:70–76

    Article  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress: Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136: 3276–3283

    Article  PubMed  CAS  Google Scholar 

  • Kramer U (2005) Phytoremediation: Novel approaches to cleaning up polluted soils. Curr Opinion Biotechnol 16: 133–141

    Article  Google Scholar 

  • Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian JC (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241

    Article  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218

    Article  PubMed  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Meda AR, Scheuermann EB, Frechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wiren N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773

    Article  PubMed  CAS  Google Scholar 

  • Ouelhadj A, Kaminski M, Mittag M, Humbeck K (2007) Receptor-like HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Exp Bot 58:1381–1396

    Article  PubMed  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. PNAS 97:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. PNAS 98:9995–10000

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Zhang Y, Chai T (2007) Characterization of novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness. Plant Physiol 143:50–59

    Article  PubMed  CAS  Google Scholar 

  • Rupali D, Sarkar D (2004) Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: An overview. Environ Geosci 11:53–63

    Article  Google Scholar 

  • Rocovich SE, West DA (1975) Arsenic tolerance in populations of the grass Andropogon scoparius. Science 188:187–188

    Article  Google Scholar 

  • Rosen B (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N (2005) Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merklel SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnol 16:925–928

    Article  CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with different responses to cadmium and alternatively spiced variants. Plant Physiol 143: 110–1118

    Article  Google Scholar 

  • Roth U, von Roepenack-Lahaya, Clements S (2006) Proteom changes in Arabidopsis thaliana roots upon exposure to cadmium. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Sun RL, Zhou QX (2005) Heavy metal tolerance and hyper-accumulation of higher plants and their molecular mechanisms. Acta Phytoecol Sin 19:321–332

    Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transge Res 15:615–625

    Article  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA (2008a) Calcium as a versatile plant signal transducer under soil water stress. BioEssays 30:634–641

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Zhao CX (2008b) Advances in functional regulation mechanisms of plant aquaporins: Their diversity, gene expression, localization, structure and roles in plant soil-water relations. Mol Memb Biol 25:1–12

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008c) Water-deficit stress-induced anatomical changes in higher plants. CR Biologies 331:215–225

    Article  Google Scholar 

  • Shao HB, Chu LY, Kang CM (2008d) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA (2008e) Physiological and molecular responses of higher plants to abiotic stresses. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 1–22

    Google Scholar 

  • Suzuki N, Kozumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    Article  CAS  Google Scholar 

  • Savenstrad H, Strid A (2004) Six genes strongly regulated by mercury in Pisum sativum roots. Plant Physiol Biochem 42:135–142

    Article  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzynska A, Kaminska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K, Yamanaka N, Masuno T, Konagai S, Shitan N, Kaneko S, Ueda K, Sato F (2006) Heterologous expression of a mammalian ABC transporter in plant and its application to phytoremediation. Plant Mol Biol 61:491–503

    Article  PubMed  CAS  Google Scholar 

  • Yeh Ch-M, Chien PS, Huang HJ (2007) Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by One Hundred-Talent Plan of Chinese Academy of Sciences (CAS), CAS-local Government Cooperative Project, the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Important Direction Project of CAS (KZCX2-YW-JC203) and CAS YOUNG SCIENTISTS FELLOWSHIP (2009Y2B211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Bo Shao , Li-Ye Chu , Fu-Tai Ni , Dong-Gang Guo , Hua Li or Wei-Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shao, HB., Chu, LY., Ni, FT., Guo, DG., Li, H., Li, WX. (2010). Perspective on Phytoremediation for Improving Heavy Metal-Contaminated Soils. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_11

Download citation

Publish with us

Policies and ethics