Skip to main content

The Structural and Functional Characteristics of Asiatic Desert Halophytes for Phytostabilization of Polluted Sites

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Phytoremediation, the use of plants to extract, sequester, and/or detoxify pollutants through biological processes is an effective, in situ, non-intrusive, low-cost, ecologically friendly, socially accepted technology to remediate polluted soils. Crystalline to fibrillar wax formations, appressed to surfaces of guard cells appear to originate from guard cells in the vicinity of the stomatal aperture. Formations may arise from evaporation of plant water at the interface between stomatal antechambers and substomatal cavities, leaving salt ions behind to precipitate. Many questions remain unanswered regarding their ecological and physiological significance as well as their occurrence and prevalence in both time and space. Such functions would be of considerable adaptive value in the light of their possible relationships to the impact of pollutants. An attempt has been made here to address these questions by analysing the morphology of salt glands and intracellular salt crystals using SEM micrographs of Salsola, Eremopyrum, Aeluropus litoralis, Tamarix and other desert plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhani H, Edwards G, Roalson E (2007) Diversification of the old world Salsoleae s.l. (Chenopodiaceae): molecular phylogenetic analysis of nuclear and chloroplast data sets and revised classification. J Plant Sci 168(6):931–956

    Article  CAS  Google Scholar 

  • Aparin VB, Kawabata Y, Ko S, Kunio S, Masahiro N, Masayoshi Y (2006) Evaluation of geoecological status and anthropogenic impact on the central Kyzylkum Desert (Uzbekistan). J Arid Land Studies 15(4):219–222

    Google Scholar 

  • Barthlott W (1994) Epicuticular wax ultrastructure and systematics. In: Behnke HD, Mabry TJ (eds) Caryophyllales: evolution and systematics. Springer-Verlag, Berlin, pp 74–86

    Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Neusel I, Theisen, Wilhelm H (1998) Classification and terminology of plant epicuticular waxes. Bot J Lin Soc 126:237–260

    Article  Google Scholar 

  • Behnke HD (1984) Plant trichomes-structure and ultrastructure:general terminology, taxonomic applications and aspects of trichome-bacteria interaction in leaf tips of Dioscorea. In: Rodrigues E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 1–21

    Google Scholar 

  • Black CC (1993) Plant sink strength: Is it real, or measurable? Plant Cell Environ 16:1037–1038

    Article  Google Scholar 

  • Black CC Jr, Toderich KN, Voronin P, P’yankov VI, Tsendeekhau T, Oyungerel S (2003) Diversity and degradation of Central Asian desert plants. Proceedings of NATO Advanced Research Workshop “Desertification Problems in Central Asia: its regional strategic development”, Samarkand 11–14 June, pp 27–29

    Google Scholar 

  • Black CC, Counce PA, Angelov MN, Yao ZF, Tu Z-P (1995) An integration of photosynthetic traits and mechanisms that can increase crop photosynthesis and grain production. Photosynth Res 46:169–175

    Article  CAS  Google Scholar 

  • Bozolla JJ, Russell LD (1998) Electron Microscopy: principles and techniques for biologists, Second edition, Boston, MA, 644p

    Google Scholar 

  • Butnik AA, Nigmanova RN, Paizieva SA, Saidov DK (1991) Ecological anatomy of desert plants of Middle Asia. FAN, Tashkent, p 293

    Google Scholar 

  • Butnik AA, Ashurmetov OA, Nigmanova RN, Paizieva SA (2001a) Ecological anatomy of desert plants of Middle Asia, vol 2. Subshrubs, subshrublets. FAN AS RUz, Tashkent, pp 132

    Google Scholar 

  • Butnik AA, Japakova UN, Begbaeva GF (2001b) Halophytes: Structure and adaptation. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer Verlag, Berlin, pp 147–154

    Chapter  Google Scholar 

  • Carolin RC (1983) The trichomes of the Chenopodiaceae and Amaranthaceae. Bot Jahrb System 103(4):451–466

    Google Scholar 

  • Carolin RC, Jakobs SWL, Vesk M (1975). Leaf structure in Chenopodiaceae Bot.Jahrb. Syst 103:450–469

    Google Scholar 

  • Chaney RL, Angle SJ, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76:562–566

    Google Scholar 

  • Ehleringer JR, Evans RD, Williams D (1998) Assessing sensitivity to change in desert ecosystems – a stable isotope approach. In: Griffiths H (eds) Stable isotopes: integration of biological, ecological, and geochemical processes. Bios Scientific, Oxford, pp 223–237

    Google Scholar 

  • Escarre J, Lefebvre C, Gruber W, Leblanc M, Lepart J, Riviere Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Article  CAS  Google Scholar 

  • Freitag H (1997) Kranz anatomy in genus Salsola, Chenopodiaceae- an apomorphic or plesiomorphic character. In: Smets E, Ronse Decraene LP, Robbbercht E (eds) 13th Symposium morphology, anatomy and systematics. Scr Bot Belg 15:64

    Google Scholar 

  • Freitag H, Stichler W (2002) Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae, another C4 plant without Kranz tissues. Plant Biol 4:121–132

    Article  Google Scholar 

  • Fuller TC, McClintock E (1986) Poisonous plants of California. Calif. Nat. Hist. Guides 53. Berkeley. vii +433 pp (Chenopodiaceae 117–121:379–385)

    Google Scholar 

  • Gamal HR, (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. J Mycobiology 33(1):41–50

    Article  CAS  Google Scholar 

  • Gintzburger G, Toderich KN, Mardonov BK, Makhmudov MM (2003) Rangelands of arid and semiarid zones in Uzbekistan. CIRAD/ICARDA:428

    Google Scholar 

  • Goldshtein RI (1997) Ecological situation in the Kyzylkums in connection with its industrial development. Bulletin of SCST of the Republic of Uzbekistan. N 3–4:70–75

    Google Scholar 

  • Hodson MJ, Wynn Parry D (1983) Silicon deposition and anatomical studies in the inflorescences bracts of four Phalaris species with their possible relevance to carcinogenesis. New Phytol 93:105–221

    Article  Google Scholar 

  • Judd WS, Ferguson IK (1999) The genera of Chenopodiaceae in the southestern United State. Harvard Papers Botany 4(2):365–416

    Google Scholar 

  • Kamalov ShK (1995) Working out of technology of clay saline range improvement in the southern part of Aral sea. J Arid Land Stud 5S:311–314

    Google Scholar 

  • Khujanazarov TM, Tsukatani T (2007) “Application of GIS technology for water quality control in the Zarafshan River Basin.” In: Lal R, Suleimenov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate changes and terrestrial sequestration in central asia. Taylor & Francis, pp 419–430

    Google Scholar 

  • Leblane M, Petit D, Deram A, Robinson BH, Brooks R (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–114

    Article  Google Scholar 

  • Luttge U (1971) Structure and function of plant glands. Ann Rev Plant Physiol 22:23–44

    Article  Google Scholar 

  • Mahllberg PG, Eun-Soo Kim (1991) Cuticle development on glandular trichomes of Canabasis sativa (Canabaceae). Amer J Bot 78(8):1113–1122

    Article  Google Scholar 

  • McWorter CD, Paul RN, Ouzts JC (1995) Bicellular trichomes of Johnson grass (Sorghum halepense) leaves: Morphology, histochemistry and function. Weed Sci 43:201–208

    Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry W, Banuelos G (eds) Phytoremediation of contaminated soil and water. Ann. Arbor. Pres., Inc., Berkeley California, 201–219

    Google Scholar 

  • Naidoo Y, Naidoo G (1998) Sporobolus virginicus (L.) Kunth leaf salt glands: Morphology and ultrastructure. South African J Bot 64(3):194–204

    Google Scholar 

  • Ottenhof CJM, Faz Cano Á, Arocena JM, Nierop KG, Verstraten JM, van Mourik JM (2007) Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain). J Chemosphere 69(9):1341–1350

    Article  CAS  Google Scholar 

  • P’yankov VI (1999) C4-species of high mountain deserts of eastern Pamir. Russ J Ecol 24:156–160

    Google Scholar 

  • P’yankov VI, Voznesenskaya EV, Kondratschuk AV, Black CC (1997) A comparative anatomical and biochemical analysis in Salsola (Chenopodiaceae) species with and without a Kranz type leaf anatomy: possible reversion of C3 to C4 photosynthesis. Amer J Bot 84:597–606

    Article  Google Scholar 

  • P’yankov VI, Voznesenskaya EV, Ku’min AN, Ku MSB, Ganko E, Franceschi VR, Black CC, Edwards GE (2000) Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae). Photosynth Res 83:69–84

    Article  Google Scholar 

  • P’yankov VI, Artyusheva EG, Edwards GE, Black CC, Soltis S (2001) Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosamal ITS sequences: Implications for the evolution of photosynthesis types. Am J Bot 88(7):1189–1198

    Article  Google Scholar 

  • P’yankov VI, Black CC, Stichler W, Zeigler H (2002) Photosynthesis in Salsola species (Chenopodiaceae) from Southern Africa relative to their C4 syndrome origin and their African-Asian arid zone migration pathways. Plant Biol 4(1):62–70

    Article  Google Scholar 

  • Rozema J, Riphagen I (2007) Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia 29:275–358

    Google Scholar 

  • Sandquist DR, Ehleringer JR (1997) Intraspecific variation of leaf pubescence and drought response in Eucelia farinose associated with the contrasting desert environments. New Phytol 35(4):635–644

    Article  Google Scholar 

  • Sangster AG, Wynn Parry D (1981) Ultrastructure of silica deposits in higher plants. In: Simpson TL, Volcani BE (eds) Silicon and Siliceous structures in biological Systems, Volcani, Spinger-Berlin, New York, pp 383–407

    Chapter  Google Scholar 

  • Sangster AG, Hodson MJ, Parry DW, Rees JA (1983) A developmental study of silicification in the trichomes and associated epidermal structures of the inflorescence bracts of the grass Phalaris canariensis L. Ann Bot 52:171–187

    CAS  Google Scholar 

  • Shirokova YI, Morozov AN (2006) Salinity of irrigated lands of Uzbekistan: causes and present state. In: Khan MA, Boer B (eds) The “Sabkha Ecosystems”. vol. II: West and Central Asia. German Stanislavovich Kust and Hans-Jorg, Batrh, pp 249–259

    Google Scholar 

  • Solodov IN (1998) The retardation and attenuation of liquid radioactive wastes due to the geochemical properties of the zone of injection. Geo Soc Lond. (Special Publications) 128: 265–280

    Article  CAS  Google Scholar 

  • Thomson WW (1975) The structure and function of salt glands. In: Poljakov-Mayber, Gale J (eds) Plants in saline environments, Springer, Berlin, pp 118–146

    Chapter  Google Scholar 

  • Thomson WW, Paraday CD, Oross JW (1988) Salt glands. In: Baker DA, Hall JA (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, Essex, pp 498–537

    Google Scholar 

  • Toderich KN (1998) Carpological studies of root apical meristem cells of Kochia prostrata. In: James E, Box Jr (eds) Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands, and Forest Ecosystems, Kluwer Academic Publisher, Dordrecht, pp 607–617

    Chapter  Google Scholar 

  • Toderich KN, Tsukatani T, Goldshtein RI, Aparin VB, Ashurmetov AA (2001b) Conservation and regeneration of Arid/Saline lands of ecological system Development in Kyzylkum Desert, Discussion paper No 533, October, Kyoto University, Japan, 14P.

    Google Scholar 

  • Toderich KN, Goldshtein RI, Aparin VB, Idzikowska K, Rashidova GSh (2001a) Environmental state and an analysis of phytogenetic resources of halophytic plants for rehabilitation and livestock feeding in arid and sandy deserts of Uzbekistan. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin, pp 154–165

    Chapter  Google Scholar 

  • Toderich KN, Tsukatani T, Goldshtein RI Aparin VB, Ashurmetov AA (2002) Ecological conservation and reclamation of arid/saline lands under agricultural system development in Kyzylkum deserts of Uzbekistan. In: Akhmad R, Malik KA (eds) Prospects for saline agriculture. Kluwer Academic Publishers, Dordrecht, pp 19–28

    Google Scholar 

  • Toderich KN, Aparin VB, Tsukatani T, Konkin AB (2003). Strategies of cellular mechanism of adaptation of desert plants to environmental contaminants in the Central Kyzylkum Desert. Chinese J Arid Land Geogr 26(110):150–159

    Google Scholar 

  • Toderich KN, Idzikowska K, Yensen N, Black CC, Shuyskaya EV (2004a) Asiatic tree-like species of genus Salsola: floral variation and their role in seed formation and germination. Trudy nauchno-proizvodstvennogo Centra “Botanika”: 205–207

    Google Scholar 

  • Toderich KN, Tsukatani T, Petukhov OF, Gruthinov VA, Khujanazarov T, Juylova EA (2004b) Risk assessment of environmental contaminants of Asiatic deserts ecosystems in relation to plant distribution and structure. J Arid Land Stud 14S:33–36

    Google Scholar 

  • Toderich KN, Tsukatani T, Shuyskaya EV, Khujanazarov T, Azizov AA (2005a) Water quality and livestock waste management in the arid and semiarid zones of Uzbekistan. In: Proceedings of the University of Obihiro, Japan, pp 574–583

    Google Scholar 

  • Toderich KN, Tsukatani T, Shuyskaya EV, Khujanazarov T, Azizov AA (2005b) Water quality and livestock waste management in the arid and semiarid zones of Uzbekistan. In: Proceedings of the University of Obihiro, Japan, pp 574–583

    Google Scholar 

  • Toderich KN, Li VV, Black CC, Yunusov TR, Shuiskaya EV, Mardanova GK, Gismatullina LG (2006) Linkage studies of structure, isoenzymatic diversity and some biotechnological procedures for Salsola species under desert saline environments. In: Abdelly C, Ozturk M, Ashraf M, Grignon C (eds) Biosaline Agriculture and Salinity Tolerance in Plants. Birkhouser Verlop AG, Basel, pp 73–82

    Chapter  Google Scholar 

  • Toderich KN, Black CC, Juylova E, Kozan O, Mukimov T (2007) C3/C4 plants in the vegetation of Central Asia, geographical distribution and environmental adaptation in relation to climate”. In: Lal R, Steward BA, Suleimenov M (eds) Carbon management and sequestration in Drylands of Central Asia. Balkema Publishers, Netherlands, pp 33–63

    Chapter  Google Scholar 

  • Toderich KN, Black CC, Naoko M, Juylova EA, Kozan O, Mukimov T (2007) C3/C4 plants in the vegetation of Central Asia, geographical distribution and environmental adaptation in relation to climate. In: Lal R, Suleimenov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate changes and terrestrial sequestration in Central Asia. Taylor & Francis/Balkema Publishers, Leiden, The Netherlands, pp 33–65

    Chapter  Google Scholar 

  • Toderich KN, Ismail S, Juylova EA, Rabbimov AR, Bekchanov BB, Shyuskaya EV, Gismatullina LG, Kozan O, Radjabov T (2008) New approaches for biosaline agriculture development, management and conservation of sandy desert ecosystems. In: Abdelly C, Ozturk M, Ashraf M, Grignon C (eds) Biosaline Agriculture and Salinity Tolerance in Plant, Birkhauser, Verlag, Switzerland, pp 247–264

    Chapter  Google Scholar 

  • Toderich KN, Shuyskaya EV, Ismail Sh, Gismatullina L, Radjabov T, Bekhchanov BB, Aralova D (2009) Phytogenetique resources of halophytes of Central Asia and their role for rehabilitation of sandy desert degraded rangelands. J Land Degrad Develop 20(4):386–396

    Article  Google Scholar 

  • Tsukatani T, Katayama Y (2001) Water Quality of Zerafshan River Basins. Discussion Paper No 527. Kyoto Institute of Economic Research, Kyoto University, Japan, pp 28

    Google Scholar 

  • Tsukatani T, Toderich K, Goldstein R (2008) Uranium mine aftermath and Yangiabad Expedition in Uzbekistan. Discussion Paper No 647. Kyoto Institute of Economic Research, Kyoto University, Japan, pp 25

    Google Scholar 

  • Voznesenskaya EV, Gamaley YV (1986) The ultrastructural characteristics of leaf types with Kranz anatomy. Botanicheskii Zurnal 71:1291–1307 (in Russian)

    Google Scholar 

  • Voznesenskaya EV, Artyusheva EG, Franceschi VR, Pyankov VI, Maurice KO, Ku SB, Edwards GE (2001) Salsola arbusculiformis, a C3-C4 intermediate in Salsoleae (Chenopodiaceae). Ann Bot 88:337–348

    Article  Google Scholar 

  • Voznesenskaya E, Francheschi VR, Olavi K, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). The Plant J 31(5):649–662

    Article  CAS  Google Scholar 

  • Wahid A (2003) Physiological significance of morpho-anatomical features of halophytes with particular reference to cholistan flora. Int J Agri Biol 5(2):207–212

    Google Scholar 

  • Walter H, Box EO (1983) The deserts of Central Asia. In: West NE (ed) Ecosystems of the World, Amsterdam 5:193–236

    Google Scholar 

  • Winter K (1981) C4 plants of high biomass in arid regions of Asia: Occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia 48:100–106

    Article  Google Scholar 

  • Wojnicka-Poltorak A, Chudzinska E, Shuiskaya E, Barczak H, Toderich K, Prus-Glowacki W (2002) Isoenzymatic and cytological studies of some Asiatic species of genus Salsola. Acta Societatis Botanicorum Poloniae 71(2):115–120

    Article  CAS  Google Scholar 

  • Wu L, Enberg M, Tanji KK (1993) Natural establishment and selenium accumulation of herbaceous plant species in soils with elevated concentrations of selenium and salinity under irrigation and tillage practices. Ecotoxicol Environ Saf 25(2):127–140

    Article  PubMed  CAS  Google Scholar 

  • Yensen NP, Hinchman RR, Negri MC, Mollock GN, Settle T Keiffer CS, Carty DJ, Rodgers B, Martin R, Erickson R (2000) Using halophytes to manage oilfield saltwater: disposal by irrigation/evapotranspiration and remediation of spill. USDA Natural Resources Conservation Service

    Google Scholar 

  • Yordoan AY, Kruger H (1998) Notes on the cuticular ultrastructure of six xerophytes from Southern Africa. South African J Bot 64(1):82–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K.N. Toderich , E.V. Shuyskaya , T.M. Khujanazarov , Shoaib Ismail or Yoshiko Kawabata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Toderich, K., Shuyskaya, E., Khujanazarov, T., Ismail, S., Kawabata, Y. (2010). The Structural and Functional Characteristics of Asiatic Desert Halophytes for Phytostabilization of Polluted Sites. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_12

Download citation

Publish with us

Policies and ethics