Skip to main content

Boron and Plants

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Boron is found naturally in the earth’s crust in the oxidized form as borax and colemanite, particularly in the oceans, sedimentary rocks, coal, shale, and some soils. It is never found in the elemental form in nature possessing a complex chemistry similar to that of silicon, with properties switching between metals and non-metals. Boron has become an important and strategic element in terms of developing technologies. It is released into the environment mainly through the weathering of rocks, volatilization from oceans, geothermal steam, burning of agricultural refuse and fuel wood, power generators (coal/oil combustion), glass industry, household use of boron-containing products (including soaps and detergents), borax mining and processing, leaching from treated wood and paper, chemical plants, and sewage/sludge disposal, but a major proportion originates from the weathering of rocks. Boron is regarded as an essential element for human beings, animals and plants. Boron occurs in soils at concentrations ranging from 10 to 300 mg kg−1 depending on the type of soil, amount of organic matter, and amount of rainfall. The treatments lead to significant increases in the productivity of some plants but in certain cases a decrease is seen as the boron level increases with the boron content of irrigation water, in particular on the soils with a heavy texture, high CaCO3 and clay content. Lack of boron in plants results in necrosis but excess amounts are said to produce poisonous effects. Turkey produces more than 60% of the world’s borax, with important boron reserves located in Susurluk, Bigadic and Sindirgi regions of Balikesir, Kestelek-Bursa, Emet-Kutahya, the largest reserves occur in Kirka-Eskisehir. Therefore, there is a naturally occurring high level of boron in the ground waters in some of these areas due to the excess amounts of boron given out to the environment during washing and purification processes which result in the pollution of cultivated areas. An attempt will be made here to present an overview of the plant diversity on the boron contaminated soils in Turkey, effects of different concentrations of boron on the germination ability of some plants and possible candidates for phytomining of the soils showing boron toxicity symptoms.

Dedicated to Prof. Dr. Yusuf VARDAR (Ege University) and Prof. Dr. Hubert ZIEGLER (Munich Technical University) on their sad demise in 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulnour JE, Donnelly DJ, Barthakur NN (2000) The effect of boron on calcium uptake and growth in micropropagated potato plantlets. Potato Res 43(3):287–295

    Article  CAS  Google Scholar 

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555(1):72–78

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, NewYork

    Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Ralf M, Roberts K, Walter P (2004) Essential Cell Biology, 2nd edn. Garland Science/Taylor & Francis Group, USA

    Google Scholar 

  • Angelis KJ, Mcguffie M, Menke M (2000) Adaption to alkylation damage in DNA measured by the comet assay. Environ Mol Mutagen 36:146–150

    Article  PubMed  CAS  Google Scholar 

  • Ardic M, Sekmen AH, Turkan I, Tokur S, Ozdemir F (2009) The effects of boron toxicity on root antioxidant systems of two chickpea (Cicer arietinum L.) cultivars. Plant Soil 314:99–108

    Article  CAS  Google Scholar 

  • Ataslar E, Potoglu I, Tokur S, (1995) Eskisehir Hamidiye’de Yayilis Gösteren Bazi Bitkilerde Bor Degisimi. I. Spil Fen Bilimleri Kongresi, September 4–5, Celal Bayar Üniversitesi, Fen–Edebiyat Fakültesi, Manisa

    Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mut Res 613:76–102

    Article  CAS  Google Scholar 

  • Atienzar FA, Cordi B, Donkin ME, Evenden AJ, Jha AN, Depledge MH (2000) Comparison of ultraviolet–induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmate. Aquat Toxicol 50:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ayvaz M (2002) Bazi Arpa Çeşitlerinde Borun Büyüme ve Gelişme Üzerine Etkileri, Yüksek Lisans Tezi, Biyoloji Anabilim Dali, S. 21–32

    Google Scholar 

  • Babaoglu M, Gezgin S, Topal A, Sade B, Dural H (2004) Gypsophila sphaerocephala Fenzl ex Tchihat: A boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turkish J. Bot 28:273–278

    Google Scholar 

  • Bagheri A, Paull JG, Rathjen AJ (1996) Genetics of tolerance to high concentrations of soil boron in peas (Pisum sativum L.). Euphytica 87:69–75

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989). Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994). Heavy metal accumulation and tolerance in British populations of metallophyte Thlaspi caerulescens J. & C.Presl Brassicaceae. New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Barth RF, Soloway AH (1994) Boron neutron capture therapy of primary and metastatic brain tumors. Mol Chem Neuropathol 21(2–3):139–154

    Article  PubMed  CAS  Google Scholar 

  • Batar T, Koksal NS, Yersel SA (2009) Production and characterization of wall plaster with borax and paper wastes and perlite additives. Ekoloji 18(72):45–53

    Article  CAS  Google Scholar 

  • Bayca SU, Batar T, Sayin E, Solak O, Kahraman B (2008) The influence of coal ash and tincal (boron mineral) additions on the physical properties and microstructures of ceramic bodies. J Ceramic Process Res 9(2):118–120

    Google Scholar 

  • Baykut B, Aydin A, Baykut S (1987) Çevre Sorunlari ve Korunma. Güryay Matbaacilik Tic. Ltd. Sti. Istanbul

    Google Scholar 

  • Beddowes EJ, Faux SP, Chipman JK (2003) Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology 187 (2–3):101–115

    Article  PubMed  CAS  Google Scholar 

  • Benga GH, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I, Brain A, Wrigglesworth J (1986) Water permeability of human erythrocytes. identification of membrane proteins involved in water transport. Eur J Cell Biol 4:252–262

    Google Scholar 

  • Bennett WF (1993) Nutrient deficiencies and toxicities in crop plants. APS Press, St Paul, MN, USA

    Google Scholar 

  • Bergmann W (1992) Colour atlas: nutritional disorders of plants. Gustav Fischer, New York

    Google Scholar 

  • Bingham FT (1982) Boron. In: Page AL (ed) Methods of soil analysis, part 2: chemical and mineralogical properties, Amer Soc Argon, Madison

    Google Scholar 

  • Bolanos L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Article  PubMed  CAS  Google Scholar 

  • Bonilla I, Garcia–Gomez M, Mates P (1990) Boron requirements in cyanobacteria: Possible role in the early evolution of photosynthetic organisms. Plant Physiol 94:1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Kuhn R (1980) Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res 14:231–241

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol–rich species. Ann Bot 77:497–505

    Article  CAS  Google Scholar 

  • Brown PH, Shelp BT (1997) Boron mobility in plants. Plant Soil 193:85–101

    Article  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron dificiency. Plant Physiol 119:17–20

    Article  PubMed  CAS  Google Scholar 

  • Butterwick L, De Oude N, Raymond K (1989) Safety assessment of boron in aquatic and terrestrial environments. Ecotoxicol Environ Saf 17:339–371

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Römheld V (1997) Boron deficiency–induced impairments of cellular functions in plants. In: Dell B, Brown P, Bell R (ed) Boron in soil and plants: Reviews; Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Canon P, Rodriguez A. Arce–Johnson P Molecular cloning and expression analysis of putative boron transporter Bor1 from citrus. http://www.ncbi.nlm.nih.gov/nuccore/147886438. Accessed: 31 August 2009

  • Cartwright B, Zarcinas BA, Mayfield AH (1984) Toxic concentrations of B in a red–brown earth at Gladstone, South Australia. Aust J Soil Res 22:261–272

    Article  CAS  Google Scholar 

  • Cartwright B, Zarcinas BA, Spouncer LA (1986) Boron toxicity in South Australian barley crops. Aust J Agric Res 37:351–359

    Article  CAS  Google Scholar 

  • Cenkci S, Yildiz M, Ciğerci IH, Konuk M, Bozdağ A (2009) Toxic chemicals–induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76(7):900–906

    Article  PubMed  CAS  Google Scholar 

  • Cervilla LM, Blasco B, Rios JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to Boron toxicity. Ann Bot 100:747–756

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Crawford NM, Schroeder JI (1999) Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell 11:661–675

    PubMed  CAS  Google Scholar 

  • Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  • Culver BD, Smith RG, Brotherton RJ, Strong PL, Gray TM (1994) Boron. In: Clayton GD, Clayton FE (ed) Patty’s industrial hygiene and toxicology. Wiley, New York

    Google Scholar 

  • Dannel F, Pfeffer H, Romheld V (2000) Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10B and 11B. Aust J Plant Physiol 27:397–405

    CAS  Google Scholar 

  • Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193:103–120

    Article  CAS  Google Scholar 

  • Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    Article  PubMed  CAS  Google Scholar 

  • Donghua L, Wusheng J, Lingxin Z, Lufang L (2000) Effects of boron ions on root growth and cell division of broadbean (Vicia faba L.). Israel J Plant Sci 48:47–51

    Article  Google Scholar 

  • Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175:95–105

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel–mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  PubMed  CAS  Google Scholar 

  • Dündar M, Çepel N (1979) Emet Yöresindeki Boraks Maden Isletmeciliginin Çevredeki Orman Vejetasyonu Üzerine Yaptigi Zararli Etkiler. Çevre Sorunlari–Vejetasyon Iliskileri Sempozyumu, Tübitak Yayinlari, Ankara

    Google Scholar 

  • Etiproducts (2005) http://www.etimaden.gov.tr/en/a_img/Annual_Report_2005.pdf

  • Fort DJ, Propst TL, Stover EL, Strong PL, Murray FJ (1998) Adverse reproductive and developmental effects in Xenopus from insufficient boron. Biol Trace Elem Res 66:237–259

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, von Wirén N (2002) Plant biology: ping–pong with boron. Nature 420(6913):282–283

    Article  PubMed  CAS  Google Scholar 

  • Gestring WD, Soltanpour PN (1987) Comparison of soil tests for assessing boron toxicity to alfalfa. Soil Sci Soc Am J 51:1214–1219

    Article  CAS  Google Scholar 

  • Gezgin S, Dursun N, Hamurcu M, Harmankaya M, Önder M, Sade B, Topal A, Soylu S, Akgün N, Yorgancilar M, Ceyhan E, Çiftçi N, Acar B, Gültekin I, Isik Y, Şeker C, Babaoglu M (2002) Determination of boron contents of soils in central Anatolian cultivated lands and its relations between soil and water characteristics. In: Goldbach HE, Brown PH, Rerkasem B, Thellier M, Wimmer MA, Bell RW (ed) Boron in plant and animal nutrition. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Gilliam CH, Watson ME (1981) Boron accumulation in Taxus media. Hort Sci 16:340–341

    CAS  Google Scholar 

  • Glaubig BA, Bingham FL (1985) Boron toxicity characteristics of four northern California endemic tree species. J Environ Qual 14:72–77

    Article  CAS  Google Scholar 

  • Goldbach HE, Yu Q, Wingender R, Schultz M, Wimmer M, Findeklee P, Baluska F (2001) Rapid responses of roots to boron deprivation. J Plant Nutr Soil Sci 164:173–181

    Article  CAS  Google Scholar 

  • Goldberg S, Shouse PJ, Lesch SM, Grieve CM, Poss JA, Foster HS, Suarez DL (2003) Effect of high boron application on boron content and growth of melons. Plant Soil 256: 403–411

    Article  CAS  Google Scholar 

  • Guhl W (1996) Ecological aspects of boron. SÖFW J 118(18/92):1159–1168 (in German)

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2006) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    Article  PubMed  CAS  Google Scholar 

  • Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Hartmann TH (1981) Plant science, growth, development and utilization of cultivated plants. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  • Hu H, Brown PH, Labavitch JM (1996) Species variability in boron requirement is correlated with cell wall pectin. J Exp Bot 295:227–232

    Article  Google Scholar 

  • Huang C, Graham RD (1990) Resistance of wheat genotypes to boron toxicity is expressed at the cellular level. Plant Soil 126:295–300

    Article  CAS  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  PubMed  CAS  Google Scholar 

  • Jamjod S (1996) Genetics of boron tolerance in durum wheat. Ph.D. Thesis, The University of Adelaide, South Australia

    Google Scholar 

  • Jenkin MJ (1993) The genetics of boron tolerance in barley. Ph D Thesis, The University of Adelaide, South Australia

    Google Scholar 

  • Kalafatoglu E, Ors N, Sener S, Yuzer H, Erbil AC (1997) Bor bileşikleri içeren atik sularin aritlimasi. TUBITAK Marmara Araştirma Merkezi, Gebze–Kocaeli

    Google Scholar 

  • Kalafatoglu I.E, Ors SN (2000) Yüzyilda bor teknolojileri ve uygulamalari, Kritek, TUBITAK–Marmara Araştirma Merkezi, Gebze–Kocaeli

    Google Scholar 

  • Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Poll 107:225–231

    Article  CAS  Google Scholar 

  • Kaya A, Karakaya HC, Fomenko DE, Gladyshev VN, Koc A (2009) Identification of a novel system for Boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29: 3665–3674

    Article  PubMed  CAS  Google Scholar 

  • Kekeç G (2008) Effect of Boron pollution on some crops germination, dertermination of modifications in genetic structure by using RAPD method and reducing this effect by using growth hormones. Fatih University, Istanbul

    Google Scholar 

  • Keren R, Bingham FT (1985) Boron in water, soils, and plants. Adv Soil Sci 1:229–276

    Article  CAS  Google Scholar 

  • Kliegel W (1980) Boron in biology, medicine and pharmacy: physiological effects and use of boron compounds. Springer–Verlag, Berlin (in German)

    Google Scholar 

  • Kluge R, Podlesak W (1985) Plant critical levels for the evaluation of boron toxicity in spring barley (Hordeum vulgare L.). Plant Soil 83:381–388

    Article  CAS  Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metals contaminted soils with plant bioassays. Mutat Res 420:37–48

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross–linked by borate–diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    PubMed  CAS  Google Scholar 

  • Kocacaliskan I, Olcer H (2006) Excess boron reduces polyphenol oxidase activities in embryo and endosperm of maize seed during germination. Z. Naturforsch 62:111–115

    Google Scholar 

  • Kochian LV, Pence NS, Letham DLD, Pineros MA, Magalhaes JV, Hoekenga OA, Garvin DF (2002) Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant Soil 247:109–119

    Article  CAS  Google Scholar 

  • Konuk M, Liman R, Cigerci İH (2007) Determination of genotoxic effect of boron on Allium cepa root meristematic cells. Pak J Bot 39:73–79

    Google Scholar 

  • Kose H, Batar T, Kahraman B (2003) Dunya bor stratejisi ve borun Turkiye için önemi. EGIAD Yayinlari, Izmir

    Google Scholar 

  • Kubata J (1980) Regional distribution of trace element problems in North America. In: Davies B (ed) Applied soil trace elements. Wiley, London

    Google Scholar 

  • Kuchel H, Landridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Linden CH, Hall AH, Kulig KW, Rumack BH (1986) Acute ingestion of boric acid. J Toxicol Clin Toxicol 24:269–279

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Jiang W, Zhang L, Li L (2000) Effects of boron ions on root growth and cell division of broad bean (Vicia faba L.). Israel J Plant Sci 48: 47–51

    Google Scholar 

  • Liu W, Li P, Qi X, Zhou Q, Sun T, Yang Y (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Yang Y, Zhou Q, Xie L, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239

    PubMed  CAS  Google Scholar 

  • Lou Y, Yang Y, Xu J (2001) Effect of boron fertilization on B uptake and utilization by oilseed rape (Brassica napus L.) under different soil moisture regimes. J Appl Ecol 12(3):478–480

    CAS  Google Scholar 

  • Lovatt CJ, Dugger WM (1984) Boron. biochemistry of the essential ultratrace elements. Plenum Press, New York

    Google Scholar 

  • Lyday P (1993) Boron. Department of the Interior, Washington

    Google Scholar 

  • Ma TH (1999) The role of plant systems for the detection of environmental mutagens and carcinogens. Mutat Res 437:97–100

    PubMed  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that accumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Maas EV (1987) Salt tolerance of plants. In: Christie lBR (ed) Handbook of plant science in agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Mateo P, Bonilla I, Fernandez–Valiente E, Sanchez–Maeso E (1986) Essentiality of boron for dinitrogen fixation in Anabaena sp. PCC 7119. Plant Physiol 81:17–21

    Article  Google Scholar 

  • Matoh T, Ochiai K (2005) Distribution and partitioning of newly taken–up boron in sunflower. Plant Soil 278:351–360

    Article  CAS  Google Scholar 

  • Mellor JW (1980) Mellor’s comprehensive treatise on inorganic and theoretical chemistry. Longman, London, New York

    Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios I (2006) Effects of 4–month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163(2):176–85

    Article  PubMed  CAS  Google Scholar 

  • Nable RO, Paull JG (1991) Mechanism of genetics of tolerance to boron toxicity in plants. Curr Top Plant Biochem Physiol 10:257–273

    CAS  Google Scholar 

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 198:181–198

    Article  Google Scholar 

  • Nobel W (1981) The effect of boron on submerged soft–water macrophytes. Angew Bot 55:501–514

    CAS  Google Scholar 

  • Noguchi K, Dannel F, Pfeffer H, Romheld V, Hayashi H, Fujiwara T (2000) Defect in root–shoot translocation of boron in Arabidopsis thaliana mutant bor1–1. J Plant Physiol 156:751–755

    Article  CAS  Google Scholar 

  • Norman JC (1998) Boron. Mining Eng 50:28–30

    Google Scholar 

  • Nuttall CY (2000) Boron tolerance & uptake in higher plants. PhD Thesis, Department of Plant Sciences & Gonville and Caius College, University of Cambridge

    Google Scholar 

  • Nyomora AMS, Sah RN, Brown PH, Miller RO (1997) Boron determination in biological materials by inductively coupled plasma atomic emission and mass spectrometry: effects of sample dissolution methods. Fresenius’ J Analy Chem 357:1185–1191

    Article  CAS  Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross–linking of cell wall rhamnogalacturonan II for Arabidopsis. Growth Sci 294:846–849

    Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross–linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  CAS  Google Scholar 

  • Önel A (1981) Pollution of some water and soil resources in Marmara region by boron, arsenic and coal and the precautions to be taken. The ministry of Energy and Natural Resources, DSI, Turkey

    Google Scholar 

  • Oren Y, Linder C, Daltrophe N, Mirsky Y, Skorka J, Kedem O (2006) Boron removal from desalinated seawater and brackish water by improved electrodialysis. Desalination 199:52–54

    Article  CAS  Google Scholar 

  • Parks JL, Edwards M (2005) Boron in the environment. Crit Rev Environ Sci Technol 35:81–114

    Article  CAS  Google Scholar 

  • Paull JG, Nable RO, Rathjen AJ (1992) Physiological and genetic control of the tolerance of wheat to high concentrations of boron and implications for plant breeding. Plant Soil 146:251–260

    Article  CAS  Google Scholar 

  • Papadakis I, Dimassi K, Bosabalidis A, Therios I, Patakas A, Giannakoula A (2004) Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Sci 166:539–547

    Article  CAS  Google Scholar 

  • Pawa S, Ali S (2006) Boron ameliorates fulminant hepatic failure by counteracting the changes associated with the oxidative stress. Chem Biol Interact 25:160(2):89–98

    Article  CAS  Google Scholar 

  • Peres JM, Bureau F, Neuville D, Arhan P, Bougle D (2002) Inhibition of zinc absorption by iron depends on their ratio. J Trace Elem Med Biol 15(4):237–241

    Article  CAS  Google Scholar 

  • Raven JA (1980) Short and long–distance transport of boric acid in plants. New Phytol 84:231–249

    Article  CAS  Google Scholar 

  • Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L., and other genera of the Brassicaceae. Taxon 37:309–318

    Article  Google Scholar 

  • Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Reeves RD, Schwartz C, Morel LM, Edmondson J (2001) Distribution and metal–accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremed 3:145–172

    Article  CAS  Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 27:1405–1414

    Article  CAS  Google Scholar 

  • Risom L, Møller P, Loft S (2005) Oxidative stress–induced DNA damage by particulate air pollution. Mutat Res 592:119–137

    Article  PubMed  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of Boron toxicity in barley using metabolomics: Environmental stress and adaptation to stress. Plant Physiol 142:1087–1101

    Article  PubMed  CAS  Google Scholar 

  • Roskill (1999) The economics of Boron. Roskill Information Services Ltd., London

    Google Scholar 

  • Rowe RI, Eckhert CD (1999) Boron is required for zebrafish embryogenesis. J Exp Bot 202:1649–1654

    CAS  Google Scholar 

  • Sage RF, Ustin SL, Manning SJ (1989) Boron toxicity in the rare serpentine plant. Streptanthus morrisonii. Environ Pollut 61:77–93

    Article  PubMed  CAS  Google Scholar 

  • Savva D (1996) DNA fingerprinting as a biomarker assay in ecotoxicology. Toxicol Ecotoxicol News Rev 3:110–114

    CAS  Google Scholar 

  • Savva D (1998) Use of DNA fingerprinting to detect genotoxic effects. Ecotoxicol Environ Safety 41:103–106

    Article  PubMed  CAS  Google Scholar 

  • Schöberl P, Huber L (1988) Ecologically relevant data of non–tenside compounds in detergents and cleaners. Tenside Deterg 25:99–107 (in German)

    Google Scholar 

  • Shani Y, Hanks RJ (1993) Model of integrated effects of boron, inert salt, and water flow on crop yield. Agron J 85:713–717

    Article  Google Scholar 

  • Shann JR, Adriano DC (1988) The chronic exposure of selected crop species to boron aerosols. Environ Exp Bot 28:289–299

    Article  CAS  Google Scholar 

  • Shelp BJ, Kitheka AM, Vanderpool RA, Cauwenberghe ORW, Spiers GA (1998) Xylem to phloem transfer of boron in broccoli and lupin during early reproductive growth. Physiol Plant 104(3):533–540

    Article  CAS  Google Scholar 

  • Shopova M, Petrovska D, Musalevski A, Najcevska C, Sekovski Z (1981) Cytogenetical and morphological effect of general toxicity caused with different concentrations of boron. Mutat Res 85:229

    Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Stangoulis JCR, Reid RJ, Brown PH, Graham RD (2001) Kinetic analysis of boron transport in Chara. Planta 213:142–146

    Article  PubMed  CAS  Google Scholar 

  • Stavrianakou S, Liakopoulos G, Karabourniotis G (2006) Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae). Environ Exp Bot 56:293–300

    Article  CAS  Google Scholar 

  • Steinkellner H, Kassie F, Knasmuller S (1999) Tradescantia–micronucleus assay for the assessment of the clastogenicity of Austrian water. Mutat Res 426:113–116

    Article  PubMed  CAS  Google Scholar 

  • Stokinger HE (1981) Boron. In: Clayton GD, Clayton FE (ed) Patty’s industrial hygiene and toxicology, volume 2B: Toxicology, 3rd edn. Wiley, New York

    Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron–toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855):1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Şener S, Özkara M (1989) The boron pollution of Simav creek waters and its effects on the soils and agricultural srops of Balikesir region, Plants and Pollutants in Developing Countries, Ege University, Bornova, İzmir

    Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. The Benjamin/Cummings Publishing Company Inc., Redwood City

    Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 21:420(6913):337–340

    Article  CAS  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. PNAS 102:12276–12281

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18(6):1498–1509

    Article  PubMed  Google Scholar 

  • Takano J, Kobayashi M, Noda Y, Fujiwara T (2007) Saccharomyces cerevisiae Bor1p is a boron exporter and a key determinant of boron tolerance. FEMS Microbiol Letts 267:230–235

    Article  CAS  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch Eur J Physiol 456:671–677

    Article  CAS  Google Scholar 

  • Travis NJ, Cocks EJ (1984) The tincal trail–a history of borax. Harraps Ltd., London

    Google Scholar 

  • Türe C, Bell WR (2004) Plant distribution and its relationship to extractable boron in naturally–occurring high boron soils in Turkey. Israel J Plant Sci 52:125–132

    Article  Google Scholar 

  • Uhl M, Plewa M, Majer BJ, Knasmuller S (2003) Basic principles of genetic toxicology with an emphasis on plant bioassays. In: Maluszynska J, Plewa M (ed) Bioassays in plant cells for improvement of ecosystem and human health. Katowice: Wydawnictwo Uniwersytetu Slaskiego

    Google Scholar 

  • Unver T, Bozkurt O, Akkaya MH (2008) Identification of differentially expressed transcripts from leaves of the boron tolerant plant Gypsophila perfoliata L. Plant Cell Rep 27:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Uslu O, Türkmen A (1987) Su Kirliliği ve Kontrolü. T.C. Başbakanlik Çevre Gen Müd Yay Eğt Dizisi 1, Türkiye

    Google Scholar 

  • Uygan D, Çetin Ö (2004) Bor’un Tarimsal ve Çevresel Etkileri: Seydisuyu su toplama havzasi. In: II.Uluslararasi Bor Sempozyumu, Eskişehir, Turkiye, 527–540

    Google Scholar 

  • Versar Inc. (1975) Preliminary investigation of effects on the environment of boron, indium, nickel, selenium, tin, vanadium and their compounds. Boron, Versar, Inc. Springfield, Virginia

    Google Scholar 

  • Weast RC, Astle MJ Beyer WHh (1985) CRC handbook of chemistry and physics. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Welsh J, McClelland M (1990) Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acid Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • WHO (1998) Boron. In: Environmental Health Criteria Monograph 204. World Health Organization, ICPCS, Geneva

    Google Scholar 

  • Williams J, Kubelik AR, Livak KJ (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Woods WG (1994) An introduction to boron: history, sources, users and chemistry. Environ Health Perspect 102:5–11

    PubMed  CAS  Google Scholar 

  • Yan X, Wu P, Ling H, Xu G, Xu F, Hang Q (2006) Plant nutriomics in China: an overview. Ann Bot 98(3):473–482

    Article  PubMed  CAS  Google Scholar 

  • Yau SK, Nachit MM, Hamblin J, Ryan J (1995) Phenotypic variation in boron–toxicity tolerance at seedling stage in durum wheat (Triticum durum). Euphutica 83:185–191

    Article  Google Scholar 

  • Yazbeck C, Kloppmann W, Cottier R, Sahuquillo J, Debotte G, Huel G (2005) Health impact evaluation of boron in drinking water: a geographical risk assessment in northern France. Environ Geochem Health 27:419–427

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Wingender R, Schulz M, Baluska F, Goldbach HE (2001) Short–term boron deprivation induces increased levels of cytoskeletal proteins in Arabidopsis roots. Plant Biol 3:335–40

    Article  CAS  Google Scholar 

  • Zhao R, Reinhart AF Reithmeier (2001) Expression and characterization of the anion transporter homologue YNL275w in Saccharomyces cerevisiae. J Physiol Cell Physiol 281:C33–C45

    CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Muaviz AYVAZ for his help by allowing us to go through his M.S. Thesis on boron interactions submitted to the Ege University, Institute of Sciences, Bornova, Izmir, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Munir Ozturk , Serdal Sakcali , Salih Gucel or Huseyin Tombuloglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ozturk, M., Sakcali, S., Gucel, S., Tombuloglu, H. (2010). Boron and Plants. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_13

Download citation

Publish with us

Policies and ethics