Skip to main content

Potential for the Use of Rhizobacteria in the Sustainable Management of Contaminated Soils

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

The removal of contaminants from the environments has become a crucial problem that requires a variety of approaches to reach suitable solutions. This review will focus on the use of rhizobacteria for restoration of sites co-contaminated with organic pollutants and heavy metals. While the first contaminants can be biodegraded to innocuous end products, metals are not biodegradable and must either be removed or stabilized within the site. Plant growth promoting rhizobacteria (PGPRs) represent a wide variety of soil bacteria which, when grown in association with a host plant result in stimulation of growth of their host also in a stressed environment. Plants, especially dicotyledons that are treated with ACC deaminase-containing PGPRs are more resistant to the deleterious effects of ethylene synthesized as a consequence of stressful conditions. In this review the use of PGPRs to assist plants in remediation processes is examined by discussing recent advances in bioaugmentation efforts. The effectiveness of the external manipulation of rhizosoil to overcome physical and chemical constraints to root establishment and to enhance pollutant removal is also examined. Finally, it is provided a summary of the recent advances in the potential for the use of transgenic plants and/ or microorganisms to remediate environmental contaminants. The complexity and diversity of plant/soil/microorganism systems require an integrated approach involving basic and applied researches in order to establish phytoremediation as a viable and attractive technology for efficient restoration of co-contaminated soils

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreoni V, Gianfreda L (2009) PAH bioremediation by microbial communities and enzymatic activities. In. RH Crabtree (ed) Handbook of green chemistry, vol 3. Biocatalysis, Wiley-VCH, Germany, pp 243–268

    Google Scholar 

  • Angle JS, Chaney RL (1989) Cadmium resistance screening in nitriloacetetate-buffered mineral media. Appl Environ Microbiol 55:2101–2114

    PubMed  CAS  Google Scholar 

  • Azcon R, Medina A, Roldan A, Biro B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334, doi:10.1016/j.chemosphere.2008.12.029

    Article  PubMed  CAS  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bullimo WD (2003) Amplification of 1-amino-cyclopropane -1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. African J Biotechnol 2:157–160

    CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S (2005) Cadmium-tolerant plant growth promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250, doi:10.1016/j.soilbio.2004.07.033

    Article  CAS  Google Scholar 

  • Bizily S, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    Article  PubMed  CAS  Google Scholar 

  • Bizily S, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: MerB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813

    Article  PubMed  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase- encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Mol Plant-Microbe Interact 13:1170–1176

    Article  PubMed  CAS  Google Scholar 

  • Boldt TS, Sorensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48:139–148

    Article  PubMed  CAS  Google Scholar 

  • Broek AV, Venderleyden J (1995) The role of bacterial motility, chemotaxis, and attachment in bacterial-plant interactions. Mol Plant Microbe Interact 8:800–810

    Article  Google Scholar 

  • Burd D, Dixon G, Glick RB (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  PubMed  CAS  Google Scholar 

  • Cattani I, Fragoulis G, Boccelli R, Capri E (2006) Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere 64:1972–1979, doi: 10.1016/j.chemosphere.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  • Cavalca L, Dell’Amico E, Andreoni V (2004) Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monooxygenase genes. Appl Microbiol Biotechnol. 64:576–587

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, GuptaS, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Poll Res 12:34–48

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Wu W, Lin Q, Xue S (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Total Environ 356:247–255

    Article  PubMed  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblage of marine proteobacteria and members of the Cytofaga-Flavobacter cluster consuming low- and high-molecular–weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Cui YS, Dong YT, Li HF, Wang QR (2004) Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environ Int 30(3):323–328, doi: 10.1016/S0160-4120(03)00182-X

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Daane LL, Harjonio I, Zylstra GJ, Hagblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:683–2691

    Article  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Doelman P, Jansen E, Michels M, VanTil M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fert Soils 17:177–184

    Article  CAS  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: Love at first sight. Microbiology 143:341–343

    Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    Article  CAS  Google Scholar 

  • Gerhardt KE, Greenberg DM, Glick BR (2006) The role of ACC deaminase in facilitating phytoremediation of organics, metals and salts. Curr Tren Microbiol 2:61–72

    CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extracellular enzymes in remediation of polluted soils: A review. Enzyme Microbial Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gibson TG, Parales ER (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opin Biotechnol 11:26–243

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol Advan 21:83–393

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase–producing soil bacteria. European J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gomes NCM (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766

    Article  PubMed  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Communalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grichko VP, Glick RB (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 9:11–17, doi:10.1016/S0981-9428(00)01212-2

    Article  Google Scholar 

  • Grichko VP, Filby B, Glick RB (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–45, doi:10.1016/S0168-1656(00)00270-4

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O'Donnell AG, Bailey JM (2003) Physiological and community responses of established grassland bacterial populations to water stress. Appl Environ Microbiol 69:6961–6968, doi:10.1128/AEM.69.12.6961–6968

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59, doi: 10.1023/A:1022371130939

    Article  CAS  Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: A key enzyme in bacterial plant growth promotion. Biochem Biophy Acta 1073:11–19

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Poll 130:465–476

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1989) Metal toxicity. In: Hughes MN, Poole RK (eds) Metals and microorganisms. Chapman and Hall, New York, pp 252–302

    Google Scholar 

  • Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68(10):1906–1912, doi:10.1016/j.chemosphere.2007.02.061

    Article  PubMed  CAS  Google Scholar 

  • Janssen DB, Dinkla IJ, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882

    Article  PubMed  CAS  Google Scholar 

  • Jansson JK (2003) Marker and reporter genes: Illuminating tools for environmental microbiologists. Curr Opinion Microbiol 6:310–316

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace elements - an environmental issue. Geoderma 122:143–149.

    Article  CAS  Google Scholar 

  • Kayser A, Schroder TJ, Grunwald A, Schulin R (2001) Solubilization and plant uptake of zinc and cadmium from soils treated with elemental sulphur. Int J Phytorem 3:381–400

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638, doi:10.1038

    Article  Google Scholar 

  • Kuo CW, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortium. Appl Environ Microbiol 62:2317–2323

    PubMed  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioengineer 95:399–403

    Article  CAS  Google Scholar 

  • Leigh MB, ProuzováP, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  PubMed  CAS  Google Scholar 

  • Liste HH, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Jiang CY, Liu XY, Wu JF, Han JG, Liu SJ (2007) Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9:465–473

    Article  PubMed  CAS  Google Scholar 

  • Loosemore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260(1–2):19–32

    Article  CAS  Google Scholar 

  • Luo YM, Christie P, Baker AJM (2000) Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41(1/2):161–164, doi:10.1016/S0045-6535(99)00405-1

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Sebastianova S, Sebestian J, Burd GI, Guinel F, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobia spp. Antonie van Leeuwenhoek 83: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–24, doi:10.1016/S0734-9750(99)00034-8

    Article  PubMed  CAS  Google Scholar 

  • Macur RE, Jackson CR, Botero LM, McDermott DR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331

    Article  PubMed  CAS  Google Scholar 

  • Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A 102:17454–17459.

    Article  PubMed  CAS  Google Scholar 

  • Mars AE, Houwing J, Dolfing J Janssen DB (1996) Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl Environ Microbiol 62:886–891.

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant-growth promoting bacteria that confer rsistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution. J Ind Microbiol Biotechnol 32:502–513

    Article  PubMed  CAS  Google Scholar 

  • Messens J, Hayburn G, Desmyter A, Laus G, Wyns L (1999) The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus. Biochemistry 38:16858–16865

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archea community structure in grassland soil. Appl Environ Microbiol 69:7420–7429

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon G, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbil Rev 27:313–339

    Article  CAS  Google Scholar 

  • Palmroth MRT, Koskinen PEP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen TA, Puhakka JA (2006) Field scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soils Sed 6:128–136

    Article  CAS  Google Scholar 

  • Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    Article  PubMed  CAS  Google Scholar 

  • Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds. OMICS A J Integ Biol 11(3):252–279

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39, doi:10.1146/ annurev.arplant.56.032604.144214

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Smaiyappan R (2001) Induction of systemic resistance by plant growth-promoting rhizobacteria in crop plants against pests and diseases. Crop Protec 20:1–11

    Article  CAS  Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM (2005) Stable isotope probing analysis of the influence of liming on root exudates utilization by soil microorganisms. Environ Microbiol 7:828–838, doi:10.1111/j.1462-2920.2005.00756.x

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Brothier E, Nazaret S (2000) Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl Environ Microbiol 66(12):5334–5339

    Article  PubMed  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian J Microbiol 51:1061–1069

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of co-contaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  PubMed  CAS  Google Scholar 

  • Roane TM, Pepper IL (1997) Microbial remediation of soils co-contaminated with 2,4-dichlorophenoxy acetic acid and cadmium. In: 12th annual conference on hazardous waste research: building partnerships for innovative technologies, 19–22 May 1997, Kansas City, Missouri

    Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero P, Pizzigallo MDR, Crecchio C (2002) Effects of soil abiotic processes on the bioavailability of anthropogenic organic residues. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Development in soil science, vol 28B. Elsevier, Amsterdam, pp 95–133

    Google Scholar 

  • Rugh CL, Wilde D, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–31087

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. BioTechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proceed Nati Acad Sci USA 10(16):10983–10988

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Perspec 111:1093–1100

    Article  CAS  Google Scholar 

  • Sanseverino J, Werner C, Fleming J, Applegate B, King JM, Sailer GS (1993–1994) Molecular diagnostic of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils. Biodegradation 4:303–321

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102: 1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32: 1939–1954

    Article  PubMed  CAS  Google Scholar 

  • Schwab AP, Al-Assi AA, Banks MK (1998) Adsorption of naphthalene onto plant roots. J Environ Qual 27:220–224

    Article  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant-growth promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Shen ZG, Liu YL (1998) Progress in the study on plants that hyperaccumulate heavy metals. Plant Physiol Composit 34:133–139

    Google Scholar 

  • Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866

    Article  PubMed  CAS  Google Scholar 

  • Shim H, Chauhan S, Ryoo D, Bowers K, Thomas SM, Canada KA, Burken JG, Wood TK (2000) Rhizosphere competitiveness of trichloroethylene degrading, poplar-colonizing recombinant bacteria. Appl Environ Microbiol 66:4673–4678

    Article  PubMed  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475, doi: 10.1128/AEM.67.6.2469-2475.2001

    Article  PubMed  CAS  Google Scholar 

  • Silva-Gonzaga MI, Santos JAG, Ma LQ (2006) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Poll 143:254–260

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in the bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  PubMed  CAS  Google Scholar 

  • Singer AC, Bell T, Heywood CA, Smith JAC, Thompson IP (2007) Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel. Environ Poll 147:74–82, doi: 10.1016/j.envpol.2006.08.029

    Article  CAS  Google Scholar 

  • Singer AC, Thomson LP, Bajley MJ (2004) The tritrophic trinity: A source of pollutant-degrading enzymes and its implication for phytoremediation. Curr Opinion Microbiol 7:239–244

    Article  CAS  Google Scholar 

  • Smith KE, Schwab AP, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility. J Environ Qual 36:239–244, doi: 10.2134/jeq2006.0089

    Article  PubMed  CAS  Google Scholar 

  • Soderberg KH, Probanza A, Jumpponen A, Baath E (2004) The microbial community in the rhizosphere determined by community level-phisyological profile (CCLP) and direct soil- and cfu-PLFA techniques. Appl Soil Ecol 25:135–145

    Article  Google Scholar 

  • Sokhn J, De Leij FAMM, Hart TD, Lynch JM (2001) Effect of copper on the degradation of phenanthrene by soil microorganisms. Lett Appl Microbiol 33:164–168

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Canadian J Microbiol 51355–386

    Google Scholar 

  • Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick B (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    Article  PubMed  CAS  Google Scholar 

  • Thompson OA, Wolf DC, Mattice JD, Thoma GJ (2008) Influence of nitrogen addition and plant root parameters on phytoremediation of pyrene-contaminated soil. Water Air Soil Poll 189:37–47.

    Article  CAS  Google Scholar 

  • Tom-Peterson A, Hosbond C, Nybroe O (2001) Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38:59–67

    Article  Google Scholar 

  • Wang L, Knill E, Glick BR, Defago G (2000) Effects of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Canadian J Microbiol 46:898–907

    CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Poll 123(1):131–138, doi: 10.1016/S0269-7491(02)00341-X

    Article  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2001) Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil 237(1):147–156, doi: 10.1023/A:1013365617841

    Article  CAS  Google Scholar 

  • Wong KW, Toh BA, Ting YP, Obbard JP (2005) Biodegradation of phenantherene by the indigenous microbial biomass in a zinc amended soil. Lett Appl Microbiol 40:50–55

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandan A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Xie HL, Jiang RF, Zhang FS, McGrath SP, Zhao FJ (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318:205–215, doi: 10.1007/s11104-008-9830-y

    Article  CAS  Google Scholar 

  • Yateem A, Al-Sharrah T, Bin-Haji A (2007) Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil Sedim Contam 16:269–280, doi: 10.1080/15226510802096143

    Article  CAS  Google Scholar 

  • Zaccheo P, Crippa L, Di Muzio Pasta V (2006) Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil 283:43–56, doi: 10.1007/s11104-005-4791-x

    Article  CAS  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. European J Plant Pathol 107(1):39–50

    Article  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151(3):613–620, doi: 10.1046/j.0028-646x.2001.00213.x

    Article  CAS  Google Scholar 

  • Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opinion Microbiol 6:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PUR 2008 from the University of Milan, Italy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincenza Andreoni or Patrizia Zaccheo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Andreoni, V., Zaccheo, P. (2010). Potential for the Use of Rhizobacteria in the Sustainable Management of Contaminated Soils. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_14

Download citation

Publish with us

Policies and ethics