Skip to main content

Salts as Potential Environmental Pollutants, Their Types, Effects on Plants and Approaches for Their Phytoremediation

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Demand for food dramatically increases as the world gets populated, and this problem is of central attention all over the world. Under these circumstances, the balance between food production and consumption depends on the agricultural productivity. However, an increase in the world population and decrease in the agricultural areas due to many reasons such as industrializations, global warming, use of marginal water etc. have been forcing us to use arable lands efficiently as well as saline-prone areas. Low fertile agricultural areas or non-agricultural areas have to be included into agricultural areas if the food production is to be increased. For this reason, many breeding and amelioration strategies have been evaluated so far, however, a few of them have been found successfully in achieving the goals. Physiological, genetical and biochemical mechanisms in plants are quite complex, therefore, it is very difficult to breed a resistant or tolerant plant against stress. To date, breeding or amelioration strategies have followed one direction, either chemical or biological, they then concentrated on either soil or plant itself, have been tested on a few plants in a few local research stations, e.g., use of mycorrhiza. An amelioration strategy both on soil and plant, which could possibly increase the crop production in saline or polluted areas, enable us to improve soil conditions for a long period of time with little effort and expenses. Salt concentration in the soil could be reduced via drainage as well as using high quality water. On the other hand, economically important crop plants have been bred for their resistance to disease and non-pathogenic stress agents such as drought and salinity and some of them have been made commercially available. However, this has not solved the problem globally, especially for the many crop plants which have to be grown in moderate saline conditions, therefore, an effective alternative approach must be found. In recent years, a new method called “bio-reclamation” or “phytoremediation” has been introduced in many scientific works and reports. It is one of the efficient methods to improve crop production and quality in saline areas aiming to grow halophytes as companion plants with the crop plants. In this chapter, the effect of salt on plants and plant metabolisms and their phytoremediation strategies have been evaluated so that halophytes could possibly be used as companion plants with crop plants without retarding their growth in saline areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt Affected Soils and their Management. FAO Soils Bulletin–39. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Adams P, Ho LC (1993) Effects of environment on the uptake and distribution of calcium in tomato and on incidence of blossom end rot. Plant Soil 154:127–132

    Article  CAS  Google Scholar 

  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967

    Google Scholar 

  • Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53(2):243–248

    Article  CAS  Google Scholar 

  • Ahmad I (1978) Some aspects of salt tolerance in Agrostis stolonifera L. Ph.D. Thesis University of Wales

    Google Scholar 

  • Ahmad I, Wainwright SJ, Stewart GR (1981) The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance. New Phytol 87:615–629

    Article  CAS  Google Scholar 

  • Ahmad I, Larher F, Mann F, McNally SF, Stewart GR (1982) Nitrogen metabolism of halophytes. IV. Characteristics of glutamine synthetase from Triglochin maritime L. New Phytol 91: 585–595

    Article  CAS  Google Scholar 

  • Akil H (2008) Biological remediation of sodic-saline soils in Harran Plain. M.Sc. Thesis, Harran University, S.Urfa, Turkey

    Google Scholar 

  • Albaho MS, Green JL (2000) Suaeda Salsa, a desalinating companion plant for greenhouse tomato. Hortscience 35(4):620–623

    Google Scholar 

  • Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236:123–128

    Article  CAS  Google Scholar 

  • Al-Rawahy SH (2000) Study of the adaptive mechanisms evolved through selecting NaCl tolerant cells and plants of alfalfa (M. media cv. Rambler). Ph.D. Thesis. University of Wales, Swansea

    Google Scholar 

  • Arfan M (2009) Exogenous application of salicylic acid through rooting medium modulates ion accumulation and antioxidant activity in spring wheat under salt stress. Int J Agric Biol 11: 437–442

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Aspinall D (1980) Role of abscisic acid and other hormones in adaptation to water stress. In: Turner NC, KramerPJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 155–173

    Google Scholar 

  • Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 206–241

    Google Scholar 

  • Austin RB (1989) Prospects for improving crop production in stressful environments. In: Jones HG, Flowers TJ, Jones, MB (eds) Plants under stress. Society for experimental biology. Seminar Series 39 Cambridge University Press, Cambridge, pp 235–248

    Chapter  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1999) Salt-stress induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf disc. Plant Sci 145:83–91

    Article  CAS  Google Scholar 

  • Balsamo RA, Thomson WW (1995) Salt effects on membranes of the hypodermis mesophyll cells of Avicennia gertninans (Avicenniaceae): a freeze-fracture study. Am J Bot 82: 435–440

    Article  CAS  Google Scholar 

  • Begg JE (1980) Morphological adaptations of leaves to water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 32–55

    Google Scholar 

  • Ben-Hayyim GB, Kochba J (1983) Aspects of salt tolerance in a NaCl–selected stable cell line of Citrus sinensis. Plant Physiol 72:685–690

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hayyim GB, Spiegel–Roy P, Neumann H (1985) Relation between ion accumulation of salt sensitive and isolated salt–stable tolerant cell lines of Citrus aurantium. Plant Physiol 78: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Bernstein L, Hayward HE (1958) Physiology of salt tolerance. Ann Rev Plant Physiol 9:25–46

    Article  CAS  Google Scholar 

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination vol: 2, viability, dormancy and environmental control, Springer, Berlin, p 375

    Book  Google Scholar 

  • Bliss RD, Platt-Aloia KA, Thomson WW (1986a) Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant Cell Environ 9:721–725

    Article  CAS  Google Scholar 

  • Bliss RD, Platt-Aloia KA, Thomson WW (1986b) The inhibitory effect of NaCl on barley germination. Plant Cell Environ 9:727–733

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RJ (1995) Adaptation to environmental stress. Plant Cell 7: 1099–1011

    PubMed  CAS  Google Scholar 

  • Bolarin MC, Santa–Cruz A, Cayuela E, Perez-Alfocea F (1995) Short–term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. J Plant Physiol 147: 463–468

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bridges EM (1997) World soils. 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Brown LR (1981) World population, soil erosion and food security. Science 214:995–1002

    Google Scholar 

  • Buhl MB, Stewart CR (1983) Effects of NaCl on proline synthesis and utilization in excised barley leaves. Plant Physiol 72:664–667

    Article  PubMed  CAS  Google Scholar 

  • Campbell RB, Richards LA (1950) Some moisture and salinity relationships in peat soils. Agron J 42:582–585

    Article  CAS  Google Scholar 

  • Chandler SF, Vasil IK (1984) Selection and characterization of NaCl tolerant cells from embryonic cultures of Pennisetum purpureum Schum (Napier Grass). Plant Sci Lett 37:157–164

    Article  CAS  Google Scholar 

  • Chaudhary MT (1996) Salt tolerance and toxicity in NaCl–selected and non–selected cells and regenerated plants of Medicago media. Ph.D. Thesis. University of Wales, Swansea

    Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Article  PubMed  CAS  Google Scholar 

  • Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Fallovo C, Cardelli M (2006) Use of Salsola soda as a companion plant to improve greenhouse peper (Capsicum Annuum) performance under saline conditions. New Zealand J Crop Hor Sci 34:283–290

    Article  CAS  Google Scholar 

  • Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCI and CaCI2, on ion activities in complex nutrient solution and root growth of cotton. Plant Physiol 81:792–797

    Article  PubMed  CAS  Google Scholar 

  • Cramer MD, Schierholt A, Wang YZ, Lips SH (1995) The influence of salinity on the utilization of root anaplerotic carbon and nitrogen–metabolism in tomato seedlings. J Exp Bot 46(291): 1569–1577

    Article  CAS  Google Scholar 

  • Croughan TP, Stayarek SJ, Rains DW (1978) Selection of NaCl–tolerant line of cultured alfalfa cells. Crop Sci 18:959–963

    Article  CAS  Google Scholar 

  • Cruz V, Cuartero J (1990) Effects of salinity at several developmental stages of six genotypes of tomato (Lycopersicon spp.). In: Cuartero J, Gomez–Guillamon ML, Fernandez–Munoz R (eds) Eucarpia tomato 90, Proc. XIth eucarpia meeting on Tomato genetics and breeding, Malaga, Spain, pp 81–86

    Google Scholar 

  • Cuartero J, Yeo AR, Flowers TJ (1992) Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol 121:63–69

    Article  CAS  Google Scholar 

  • Dajic D (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants, Springer, Netherlands, pp 41–99

    Chapter  Google Scholar 

  • Del Amor FM, Martinez V, Cerda A (2001) Salt tolerance of tomato plants as affected by stage of plant development. Hortscience 36(7):1260–1263

    CAS  Google Scholar 

  • Dikilitas M (2003) Effect of salinity, its interactions with Verticillium albo–atrum on the disease development in tomato (Lycopersicon esculentum Mill.) and lucerne (Medicago sativa and M. Media) plants. Ph.D. Thesis, University Of Wales, Swansea

    Google Scholar 

  • Dikilitas M, Çullu MA, Karakaş S, Aydemir S, Sayğan E (2007) Posible use of weeds fort he remediation of saline areas in GAP region and their biochemical responses to high level of salinity. Second annual YOK–SUNY collaboration symposium. scientific collaboration for sustainable development, 23–25 May 2007 Adana, pp 41–49

    Google Scholar 

  • Dix PJ, Street HE (1975) Sodium chloride–resistant cultured cell lines from Nicotiana sylvestris and Capsicum annuum. Plant Sci Lett 5:231–237

    Article  Google Scholar 

  • Downton WJS (1978) Growth and flowering in salt–stressed avocado trees. Australian J Agr Res 29:523–534

    Article  CAS  Google Scholar 

  • Dunlap JR, Binzel ML (1996) NaCl reduces indol-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol 112:379–384

    PubMed  CAS  Google Scholar 

  • El-Iklil Y, Karrou M, Mrabet R, Benichou M (2002) Salt stress effect on metabolic concentrations of Lycopersicum esculentum and Lycopersicum cheesmanii. Canadian J Plant Sci 82(1): 177–183

    Article  Google Scholar 

  • Emmerich WE, Hardgree SP (1990) Polyethylene–glycol solution contact effects on seed germination. Agron J 82(6):1103–1107

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsburg RW, Kelley DB, Cunningham GA, Wrena AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  PubMed  CAS  Google Scholar 

  • Esechie HA, Al-Saidi A, Al-Khanjari S (2002) Effect of sodium chloride salinity on seedling emergence in chickpea. J Agron Crop Sci 188:155–160

    Article  Google Scholar 

  • Essa TA (2001) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrrill) cultivars. J Agron Crop Sci 188:86–93

    Article  Google Scholar 

  • Fang ZQ, Yuan LY, Hong PC, Ming LC, Shan WB (2005) NaCl enhances thylakoid–bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Article  CAS  Google Scholar 

  • FAO Soils Bull (1988) Salt–affected soils and their management. Abrol IP, Yaday JSP, Massoud FI (eds) Food and agriculture organization of the United Nations. Rome, pp 1–154

    Google Scholar 

  • Fisher RA, Turner NC (1978) Plant productivity in and semi–arid zones. Ann Rev Plant Physiol 29:277–317

    Article  Google Scholar 

  • Fitter AH, Hay RKM (1987) Environmental physiology of plants, Academic Press, London

    Google Scholar 

  • Flores P, Botella MA, Martinez V, Cerda A (2002) Response to salinity of tomato seedlings with a split root system: Nitrate uptake and reduction. J Plant Nutr 25(1):177–187

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1988) Ion relations of salt tolerance. In: Bakers DA, Hall JL (eds) Solute transport in plant cells and tissues. longman scientific and technical. Harlow, UK, pp 392–416

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quarter Rev Biol 61(3): 313–337

    Article  Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of the rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Fulekar MH, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. African J Biotechnol 8(4):529–535

    CAS  Google Scholar 

  • Gao ZF, Sagi M, Lips SH (1998) Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci 135: 149–159

    Article  CAS  Google Scholar 

  • Gibson TS, Speirs J, Brady J (1984). Salt tolerance in plants. II. In vitro translation of mRNA from salt tolerant and salt sensitive plants on wheat germ ribosomes. Responses to ions and compatible organic solutes. Plant Cell Environ 7:579–587

    CAS  Google Scholar 

  • Graifenberg A, Botrini L, Giustiniani L, Filippi F, Curadi M (2003) Tomato growing in saline conditions with biodesalinating plants: Salsola soda and Portulaca oleracea. Acta Hort 609:301–305

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grieve CM, Suarez Dl (1997) Purslane (Portulaca oleracea L.): A halophytic crop for drainage water reuse systems. Plant Soil 192:277–283

    Article  CAS  Google Scholar 

  • Grieve CM, Maas EV (1988) Differential effects of sodium/calcium ratio on sorghum genotypes. Crop Sci 28(4):659–665

    Article  Google Scholar 

  • Hadson AD, Hitz WD (1982) Metabolic responses of glycophytes to plant water deficit. Ann Rev Plant Physiol 33:163–203

    Article  Google Scholar 

  • Hamidov A, Khaydarova V, Sharipova S, Costa C (2007) Salt removal potential of Portulaca oleracea golden purslane. Proceedings of the 3rd IASME/WSEAS international conference on energy, environment, ecosystems and sustainable development, Agios Nikolaos, Greece, July 24–26

    Google Scholar 

  • Handa S, Handa AK, Hasegawa PM, Bressan RA (1986) Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol 80:938–945

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implication of stress–induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hassan NS, Wilkins DA (1988) In vitro selection for salt tolerant lines in Lycopersicon peruvianum. Plant Cell Rep 7:463–466

    CAS  Google Scholar 

  • Heuer B (1994) Osmoregulatory role of proline in water and salt stressed plants. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 227–246

    Google Scholar 

  • Hillel D (1992) Out of the earth: civilizations and the life of the soil. Aurum Press, London

    Google Scholar 

  • Hodson MJ, Smith MM, Wainwright SJ, Opik H (1981) Cation cotolerance in a salt–tolerant clone of Agrostis stolonifera L. New Phytol 90:253–261

    Article  Google Scholar 

  • Hua B, Guo WY (2002) Effect of exogenous proline on SOD and POD activity of soyabean callus under salt stress. Acta Agric Boreali-Sinica 17:37–40

    Google Scholar 

  • Inal A (2002) Growth, proline accumulations and ionic relations of tomato (Lycopersicon esculentum L.) as influenced by NaCl and Na2SO4 salinity. Turkish J Bot 26:285–290

    Google Scholar 

  • Inal A, Gunes A, Aktas M (1997) Effect of chloride and partial replacement of nitrate by reduced forms of nitrogen on nitrate, total–N and chloride of onion (Allium cepa L.). Turkish J Agr Fores 21:403–406

    CAS  Google Scholar 

  • Itai C, Paleg LG (1982) Responses of water–stressed Hordeum distichum L and Cucumis sativus to proline and betaine. Plant Sci Lett 25(3):329–335

    Article  CAS  Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Tren Plant Sci 2:22–28

    Article  Google Scholar 

  • Jennings DH (1976) The effects of sodium chloride on higher plants. Biol Rev 51:453–486

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: Their role in stress defence. J Gen 85(3):237–254

    Article  CAS  Google Scholar 

  • Johnson HE (2000) The effect of salinity on tomato growth and fruit quality. PhD. Thesis. Institute of Biological Sciences, University of Wales, Aberystwyth

    Google Scholar 

  • Johnson RW, Dixon MA, Lee DR (1992) Water relations of the tomato fruit during growth. Plant Cell Environ 15:947–953

    Article  Google Scholar 

  • Jones RA, El-Beltagy AS (1989) Epinasty promoted by salinity or ethylene is an indicator of salt-sensitivity in tomatoes. Plant Cell Environ 12:813–817

    Article  CAS  Google Scholar 

  • Jumberi A, Oka M, Fujiyama H (2002) Response of vegetable crops to salinity and sodicidy in relation to ionic balance and ability to absorb microelements. Soil Sci Plant Nut 48(2):203–209

    Article  CAS  Google Scholar 

  • Kent LM, Lauchli A (1985) Germination and seedling growth of cotton: salinity–calcium interaction. Plant Cell Environ 8:155–159

    Article  CAS  Google Scholar 

  • Khan MA, Ungar IA (1997) Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. American J Bot 84:279–283

    Article  CAS  Google Scholar 

  • Kishor PBK (1988) Effect of salt stress on callus cultures of Oryza sativa L. J Exp Bot 39(199):235–240

    Article  CAS  Google Scholar 

  • Laszlo E, Stuiller B, Kupier PJC (1980) The effect of salinity on lipid composition and on activity of calcium stimulated and magnesium stimulated ATPases in salt sensitive and salt tolerant Plantago species. Physiol Plant 49:315–319

    Article  Google Scholar 

  • Leopold AC, Willing RP (1984) Evidence for toxicity effect of salt on membrane. In: Staples RC, Toenniessen GRH (eds) Salinity tolerance in plants. Wiley, New York, Chichester Brisbane, Singapore, pp 67–76

    Google Scholar 

  • Levitt, J (1972) Responses of plants to environmental stresses. Academic Press, Newyork, p 345

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses vol II. Water, radiation, salt and other stresses. 2nd ed. Academic Press, New York

    Google Scholar 

  • Long SP, Mason CF (1983) Saltmarsh Ecology. Blackie, Glasgow, pp 39–58

    Google Scholar 

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    Article  PubMed  CAS  Google Scholar 

  • Maas EW, Hoffman G (1977) Crop salt tolerance – current assessment. J Irrig Drain Division ASCE 103:115

    Google Scholar 

  • Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol Biochem 36:767–772

    Article  CAS  Google Scholar 

  • McCoy TJ, Phillips RL, Rines HW (1982) Cytogenetic analysis of plants regenerated from oat (Avena sativa) tissue cultures. High frequency of partial chromosome loss. Canadian J Gene Cytol 24:37–50

    Google Scholar 

  • Mckell CM (1994) Salinity Tolerance in Atriplex Species: Fodder Shrubs for Arid Lands. P. 497–504. In: Pessarakly M (ed) Handbook of plant and crop stress. Dekker, New York

    Google Scholar 

  • McWilliam JR (1986) The national and international importance of drought and salinity effects on agricultural production. Aus J Plant Physiol 13:1–13

    Article  Google Scholar 

  • Mirzahi Y, Taleisnik E, Kagan–Zur V, Zohas Y, Offenbach R, Matan E, Golan R (1988) A saline irrigation regime for improving fruit quality without reducing yield. J Amer Soc Hort Sci 113:202–205

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Nassery H (1975) The effects of salt and osmotic stress on the retention of potassium by excised barley and bean roots. New Phytol 75:63–67

    Article  CAS  Google Scholar 

  • Nassery H (1979) Salt induced loss of potassium from plant roots. New Phytol 83:23–27

    Article  CAS  Google Scholar 

  • Pandey R, Ganapathy PS (1984) Effects of sodium chloride stress on callus cultures of Cicer arietinum L. cv. BG–203: growth and ion accumulation. J Exp Bot 35(157):1194–1199

    Article  CAS  Google Scholar 

  • Pandey R, Ganapathy PS (1985) The proline enigma: NaCl–tolerant and NaCl– sensitive callus lines of Cicer arietinum L. Plant Sci 40:13–17

    Article  CAS  Google Scholar 

  • Pardossi A, Bagnoli G, Malorgio F, Campiotti CA, Tognoni F (1999) NaCl effects on celery (Apium graveolens L.) grown in NFT. Sci Hort 81:229–242

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safety 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Passioura JB (1986) Resistance to drought and salinity; Avenues for improvement. Aus J Plant Physiol 13:191–201

    Article  Google Scholar 

  • Patrick D, Biber PD (2006) Measuring the effects of salinity stress in the red mangrove, Rhizophora mangle L. African J Agri Res 1(1):001–004

    Google Scholar 

  • Perez-Alfocea F, Balibrea ME, Santa-Cruz A, Estan MT (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180: 251–257

    Article  CAS  Google Scholar 

  • Perez-Alfocea F, Estan MT, Santa-Cruz A, Bolarin MC (1993) Effects of salinity on nitrate total nitrogen, soluble protein and free amino acid levels in tomato plants. J Hort Sci 68: 1021–1027

    CAS  Google Scholar 

  • Pessarakli M, Tucker TC (1988) Dry matter yield and nitrogen–15 uptake by tomatoes under sodium chloride stress. Soil Sci Soc Amer J 52(3):698–700

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Plant AL, Cohen A, Moses MS, Bray EA (1991) Nucleotide sequence and spatial expression pattern of a drought–and abscisic acid–induced gene of tomato. Plant Physiol 97:900–906

    Article  PubMed  CAS  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (2002) Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use Manag 18:381–385

    Article  Google Scholar 

  • Rabhi M, Talbi O, Atia A, Abdelly C, Smaoui A (2008) Selection of a halophyte that could be used in the bioreclamation of salt–affected soils in arid and semi–arid regions. In: Abdelly C, Öztürk M, Ashraf M Grignon C (eds) Biosaline Agriculture and High Salinity Tolerance, Birkhäuser Basel, Switzerland

    Google Scholar 

  • Rajasekaran LR, Aspinall D, Paleg LG (2000) Physiological mechanism of tolerance of Lycopersicon spp. exposed to salt stress. Canadian J Plant Sci 80(1):151–159

    Article  Google Scholar 

  • Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179

    Google Scholar 

  • Reezi S, Babalar M, Kalantari S (2009) Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt stressed cut rose (Rosa xhybrida L.) ‘Hot Lady’. African J Biotechnol 8(8):1502–1508

    CAS  Google Scholar 

  • Rhodes D, Handa S, Bressan RA (1986) Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82:890–903

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Rosales MP, Kerkeb L, Bueno P, Donaire JP (1999) Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+–ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill) calli. Plant Sci 145:83–91

    Article  Google Scholar 

  • Romero JM, Maranon T (1994) Long term responses of Melilotus segetalis to salinity. I. Growth and partitioning. Plant Cell Environ 17:1243–1248

    Article  Google Scholar 

  • Romero JM, Maranon T, Murillo JM (1994) Long–term responses of Melilotus segetalis to salinity. II. Nutrient absorption and utilization. Plant Cell Environ 17:1249–1255

    Article  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications longman scientific technical. pp 277–302

    Google Scholar 

  • Rumbaugh MD, Pendery BM (1990) Germination salt resistance of alfalfa (Medicago sativa L.) germplasm in relation to subspecies and centers of diversity. Plant Soil 124:47–51

    Article  CAS  Google Scholar 

  • Rush DW, Epstein E (1976) Genotypic responses to salinity differences between salt sensitive and salt tolerant genotypes of tomato. Plant Physiol 57:162–166

    Article  PubMed  CAS  Google Scholar 

  • Sacher RF, Staples RC (1985) Inositol and sugars in adaptation of tomato to salt. Plant Physiol 77:206–210

    Article  PubMed  CAS  Google Scholar 

  • Salma ST, Busheva SM, Arafa AA, Garab G, Erdei L (1994) Effect of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. J Plant Physiol 144:241–247

    Article  Google Scholar 

  • Santos-Diaz MS, Ochoa-Alejo N (1994) Effect of water stress on growth, osmotic potential and solute accumulation in cell cultures from chili pepper (mesophyte) and Creosote bush (a xerophyte). Plant Sci 96:21–29

    Article  CAS  Google Scholar 

  • Santa-Cruz A, Estan MT, Rus A, Bolarin MC and Acosta M (1997) Effects of NaCl and mannitol iso–osmotic stresses on the free polyamine levels in leaf discs of tomato species differing in salt tolerance. J Plant Physiol 151:754–758

    Article  CAS  Google Scholar 

  • Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short–term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiology Biochem 37(1):65–71

    Article  CAS  Google Scholar 

  • Satti SME, Yahyai RA (1995) Salinity tolerance in tomato: Implications of potassium, calcium and phosphorus. Comm Soil Sci Plant Anal 26(17–18):2749–2760

    Article  CAS  Google Scholar 

  • Scofield CS (1942) Pecos river joint investigation (United States National Resources Planning Roard). Plant Pathol 263–334

    Google Scholar 

  • Seemann JR, Chritchley C (1985) Effect of salt stress on growth, ion content, stomatal behaviour and photosynthetic capacity of salt sensitive species, Phaseoolus vulgaris L. Planta 164: 151–162

    Article  CAS  Google Scholar 

  • Shah SH, Tobita S, Shono M (2002) Cation co–tolerance phenomenon in cell cultures of Oryza sativa adapted to LiCl and NaCl. Plant Cell Tissue Organ Cult 71:95–101

    Article  CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    Article  CAS  Google Scholar 

  • Shah, SH, Wainwright SJ, Merrett MJ (1990) The interaction of sodium and calcium chlorides and light on growth, potassium nutrition, and proline accumulation in callus cultures of Medicago sativa L. New Phytol 116:37–45

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hort 78:5–38

    Article  CAS  Google Scholar 

  • Sinha BK, Singh NT (1976) Chloride accumulation near corn roots under different transpiration, soil moisture and soil salinity regimes. J Agron 68:346–348

    Article  CAS  Google Scholar 

  • Smirnoff N, Stewart GR (1985) Stress metabolites and their role in coastal plants. Vegetatio 62:273–278

    Article  Google Scholar 

  • Smith MK, McComb JA (1981) Effect of NaCl on the growth of whole plants and their corresponding callus cultures. Aus J Plant Physiol 8:267–275

    Google Scholar 

  • Smith MK, McComb JA (1983) Selection for NaCl tolerance in cell cultures of Medicago sativa and recovery of plants from a NaCl tolerant cell line. Plant Cell Rep 2:126–128

    Article  CAS  Google Scholar 

  • Smith JAC, Popp M, Luttge U, Cram WJ, Diaz M, Griffiths H, Lee HSJ, Medina E, Schafer C, Stimmel, KH, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. VI. Water relations and Gas exchange of mangroves. New Phytol 111:293–307

    Article  Google Scholar 

  • Soil Survey Staff (1951) Soil survey manual. US department of agriculture handbook No. 18. P503, Washington

    Google Scholar 

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267

    Article  PubMed  CAS  Google Scholar 

  • Stavarek SJ, Rains DW (1984) Cell culture techniques: Selection and physiological studies of salt tolerance. In: Staples RC, Toenniessn GRH (eds) Salinity tolerance in plants. Wiley, New York, pp 321–334

    Google Scholar 

  • Stewart GR, Lee JA (1974) The role of proline accumulation in halophytes. Planta 120:279–289

    Article  CAS  Google Scholar 

  • Stewart GR (1981) Proline accumulation: Biochemical aspects. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 243–258

    Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Strogonov BP (1964) Practical means for increasing salt tolerance of as related to type of salinity in the soil. In: Poljakoff-Mayber A, Meyer AA (eds) Physiological basis of salt tolerance of plants. Israel program for scientific translations, Jerusalem, pp 218–244

    Google Scholar 

  • Sudhakar C, Reddy PS, Veeranjaneyulu K (1993) Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram (Phaselous aureus Roxb.) seedlings. J Plant Physiol 141:621–623

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. The Benyamin/Cummings, Publishing Company, Inc. California

    Google Scholar 

  • Tal M (1984) Physiological genetics of salt resistance in higher plants: Studies on the level of the whole plant and isolated organs, tissues and cells. In: Staples RC, Toenniessen GH (eds), Salinity tolerance in plants–strategies for crop improvement. Wiley, New York, pp 301–334

    Google Scholar 

  • Tal M, Amber D (1971) Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato II. Auxin and abscisic acid–like activity. Plant Physiol 46:373–376

    Article  Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in the wild relatives of the cultivated tomato: Responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to high salinity. Aus J Plant Physiol 10:109–117

    Article  Google Scholar 

  • Teakle LJH (1937) The salt (sodium chloride) content of rainwater. West. Australian Dept. Agron J Series 2, 14: 115–123

    Google Scholar 

  • Thomas JC, De Armond RL, Bohnert HJ (1992) Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryantheumum crystallinum suspension cultures. Plant Physiol 98:626–631

    Article  PubMed  CAS  Google Scholar 

  • Troughton J, Donaldson LA (1972) A scanning electron microscope study of some anatomical features in plants and the relationship of these structures to physiological processes. Probing Plant Structure, New Zealand. p 17

    Google Scholar 

  • Vaidyanathan R, Kuruvilla S, Thomas G (1999) Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 140:21–30

    Article  CAS  Google Scholar 

  • Van Ieperen W (1996) Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J Hort Sci 71:99–111

    Google Scholar 

  • Van Swaaij AC, Jacobsen E, Koel JAKW, Feenstra WJ (1986) Selection, characterization and regeneration of hydroxyproline–resistant cell lines of Solanum tuberosum: Tolerance to NaCl and freezing stress. Physiol Plant 68:359–366

    Article  Google Scholar 

  • Velagaleti RR, Marsh S, Kramer D (1990) Genotypic differences in growth and nitrogen fixation among soybean (Glycine max L. Merr.) cultivars grown under salt stress. Trop Agri 67:169–177

    CAS  Google Scholar 

  • Voetberg G, Sharp RE (1991) Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiol 96:1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Vose PB (1983) Rationable of selection for specific nutritional characters in crop improvement with Phaseolus vulgaris L. as a case of study. Plant Soil 72:351–364

    Article  Google Scholar 

  • Wainwright SJ (1984) Adaptations of plants to flooding with salt water. In Kozlowski TT (ed.), Flooding and Plant Growth, Academic Press, London, pp 295–343

    Google Scholar 

  • Waisel Y (1972) Biology of Halophytes. Academic Press, New York

    Google Scholar 

  • Waisel Y (1991) Adaptation To Salinity. In: Rahavendro AS (ed) Physiology Of Trees . Wiley, New York, pp 359–383

    Google Scholar 

  • Wang B, Luttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J Plant Physiol 161:285–293

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt–tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  PubMed  CAS  Google Scholar 

  • Watzman H (1999) Salty vintage: Could israeli wines rival classy clarets or crispy chardonnays? New Sci 2175:12

    Google Scholar 

  • Winicov I (1991) Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep 10:561–564

    Article  CAS  Google Scholar 

  • Winicov I, Bastola DR (1997) Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiol Plant 19:435–449

    Article  CAS  Google Scholar 

  • Yilmaz H, Kina A (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.). African J Biotechnol 7(18):3299–3305

    CAS  Google Scholar 

  • Yurekli F, Turkan I, Porgali ZB, Topcuoglu SF (2001) Indoleacetic acid, gibberellic acid, zeatina and abscisic acid levels in NaCl–treated tomato species differing in salt tolerance. Israel J Plant Sci 49(4):269–277

    Article  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Botella MA (2008) Changes in free polyamine concentration induced by salt stress in seedlings of different species. Plant Grow Regul 56:167–177

    Article  CAS  Google Scholar 

  • Zeevaart JAD (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang Z, Shao H, Xu P, Hu M, Song W, Hu X (2009) Focus on agricultural biotechnology: Prospective for bio–watersaving theories and their applications in the semi–arid and arid areas. African J Biotechnol 8(12):2779–2789

    Google Scholar 

  • Zhao, KF (1991) Desalination of saline soils by Sueda salsa. Plant Soil 135:303–305

    Article  CAS  Google Scholar 

  • Zhu JK. 2001. Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  PubMed  CAS  Google Scholar 

  • Zuccarini P (2008) Ion uptake by halophytic plants to mitigate saline stress in Solanum lycopersicon L., and different effect of soil and water salinity. Soil Water Res 3:(2):62–73

    CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to the memory of our deceased son Fecri Sami Dikilitas.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murat Dikilitas or Sema Karakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dikilitas, M., Karakas, S. (2010). Salts as Potential Environmental Pollutants, Their Types, Effects on Plants and Approaches for Their Phytoremediation. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_16

Download citation

Publish with us

Policies and ethics