Skip to main content

The Role of Arbuscualr Mycorrhizae in Inducing Resistance to Drought and Salinity Stress in Crops

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Arbuscular mycorrhizal (AM) fungi are commonly occurring soil microbes whose association with roots can have wide ranging effects on growth of the host plants. These fungi are frequent root colonizers of trees, shrubs, terrestrial orchids and a broad range of plants in temperate and tropical habitats. During the establishment of AM symbiosis, a range of chemical and biological parameters are affected in plants. These fungi are considered instrumental in promoting plant establishment and growth in these environments by enhancing plant nutrient and water uptake, protecting plants from root herbivores and pathogens and improving soil structure. This symbiosis is alleged to improve plant resistance to drought and nutrient stress. There are several reports which show that AM induce physiological drought tolerance, involving both increased dehydration avoidance and dehydration tolerance. Majority of the experiments have shown that when the symbiosis improves host drought resistance it does so by aiding drought avoidance.

AM symbiosis has frequently increased resilience of host plants to salinity stress. The AM plants in the saline soils had increased phosphate and decreased Na concentrations in shoots compared to non-AM ones. Salt resistance has been shown to improve by AM colonization in a number of crops like maize, mungbean, clover, cucumber, lettuce, tomato, and many more. A correlation has been established between AM colonization and improved osmoregulation or proline accumulation. AM colonization has also been documented to improve NaCl resistance in tomato, with the extent of improvement related to salt sensitivity of a cultivar. AM improvement of salt resistance has usually been associated with AM-induced increases in P acquisition and plant growth. However, there are scanty reports of AM induced effects on host plants being more pronounced when plants were exposed to osmotic stress in salinized soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1991) Field management of mycorrhizal fungi. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 355–362

    Google Scholar 

  • Allen MF, Bosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Google Scholar 

  • Alguacil MM, Hernandez JA, Caravaca, F, Portillo B, Roldan A (2003) Antioxident enzyme activities in shoot from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    CAS  Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nut 24:1311–1323

    CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    CAS  Google Scholar 

  • Ambler JR, Young JL (1977) Techniques for determining length infected by vesicular arbuscular mycorrhizae. J Soil Sci Soc Amer 41:551–556

    Google Scholar 

  • Asghari H, Marchner P, Smith S, Smith F (2005) Growth reponses of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256

    CAS  Google Scholar 

  • Augé RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, ISBN 0-7923-6444-9, pp 201–237

    Google Scholar 

  • Augé RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Canadian J Soil Sci 84:373–381

    Google Scholar 

  • Augé RM, Foster JG, Loescher WH, Stodola AJW (1992) Symplastic sugar and free amino acid molality of Rosa roots with regard to mycorrhizal colonization and drought. Symbiosis 12:1–17

    Google Scholar 

  • Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. In: Mehrotra VS (ed) Mycorrhiza: role and applications. Allied Publishers Limited, New Dehli

    Google Scholar 

  • Augé RM, Moore JL, Sylvia DM, Cho K (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14:85–92

    PubMed  Google Scholar 

  • Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164:1289–1299

    PubMed  Google Scholar 

  • Augé RM, Toler HD, Sams CE, Nasim G (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115–121

    PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interaction between mycorrhizal fungi and other rhizophere microorganisms. In: Allen MJ (ed) Mycorrhizal functioning: an integrative my plant-fungal process. Routledge, Chapman and Hall Inc., New York, pp 163–198

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6(6):457–464

    Google Scholar 

  • Azcón R, El-Atrash F (1997) Influence of arbuscualr mycorrhizae and phosphorus fertilization on growth, nodulation and N2 (N-15) fixation in Medicago sativa at four salinity levels. Biol Fert Soils 24:81–86

    CAS  Google Scholar 

  • Bacon, MA (2004) Water use efficiency in plant biology. Balckwell

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aquilar C (1993) Mycorrhiza and crops. Adv Plant Pathol 9:167–189

    Google Scholar 

  • Ben Khaled L, Gomez AM, Ouarraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhizal and/or nodulated clover seedlings (Trifolium alexandrium L.). Agronomie 23:571–580

    CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L., New Phytol 114:207–215

    Google Scholar 

  • Bethlenfalvay GJ (1992) Vesicular arbuscular mycorrhizal fungi in nitrogen fixing legumes. Problem and prospects. In: Norris JR, Read DJ, Varma AK (ed) Techniques for the study of mycorrhizae. Methods Microbiol 24:375–389

    Google Scholar 

  • Bildusan IJ, Dixon RR, Pfleger FL, Stewart EL (1986) Growth, nutrition and gas exchange of Bromus inarmis incoculated with Glomus fasciculatum. New Phytol 102:303–311

    Google Scholar 

  • Blizzard WE, Boyer JS (1980) Comparative resistance of the soil and the plant to water transport. Plant Physiol 66:809–814

    PubMed  CAS  Google Scholar 

  • Blum A (1988) Breeding for stress environments, CRC Press, Boca Raton

    Google Scholar 

  • Boruvka L, Drabek O (2004) Heavy metal distribution between fractions of humic substances in heavy metal polluted soils. Plant Soil Environ 50:339–345

    CAS  Google Scholar 

  • Brown KA, Roberts TM (1988) Effects of ozone on foliar leaching in Norway spruce, (Picea abies L. Karst): confounding effects due to N2O5 production during ozone generation. Environ Poll 55:55–73

    CAS  Google Scholar 

  • Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ Poll 106:169–182

    CAS  Google Scholar 

  • Canterall IC, Linderman RG (2001) Preinoculation of lattuce and onion VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233–269

    Google Scholar 

  • Charest C, Dalpe Y, Brown A (1993) The effect of vesicular arbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza 4:89–92

    Google Scholar 

  • Chaudhry TM, Hill L, Khan AG, Kuek C (1999) Colonization of iron and zinc contaminated dumped filter cake waste by microbes, plants and associated mycorrhizae. In: Wong MH, Wong JWC, Baker AJM (eds) Remediation and management of degraded land, Chap. 27. CRC Press LLC, Boca Raton, pp 275–283

    Google Scholar 

  • Chistie P, Kilpatrich DJ (1992) Vesciular arbuscular infection in cutgrass land following long-term slurry application. Soil Biol Biochem 24:325–330

    Google Scholar 

  • Cho K, Toler HD, Lee J, Ownley BH, Jean C, Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    PubMed  CAS  Google Scholar 

  • Clappert MJ, Chistie P, and Reid DM (1990) Effects of sulfur dioxide fumigation on Phleum pratense and vesicular arbuscular mycorrhizal fungi. New Phytol 115:465–469

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Clatterbuck WK (2001) Drought-tolerant trees. Publication No. SP 570. Knoxville, TN., University of Tennessee Extension

    Google Scholar 

  • Clatterbuck WK (2006). Dieback and decline of trees. Publication No. SP 686. Knoxville, TN., University of Tennessee Extension

    Google Scholar 

  • Colla G, Rouphae Y, Cardarelli M, Tulio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhiza in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soils 44:501–509

    CAS  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of activity in the higher plants, SEB Symposium XXXI. Cambridge University Press, Cambridge, pp 471–505

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular arbuscular fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Dighton J, Jansen AE (1991) Atmospheric pollutants and ectomycorrhizas, more questions than answers. Environ Poll 73:179–204

    CAS  Google Scholar 

  • Dixon RK, Rao MV, Garg VK (1994) Water relation and gas exchange of mycorrhizal Leucaena leucocephala seedlings. J Trop Fores Sci 6:542–552

    Google Scholar 

  • Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Boston, pp 307–343

    Google Scholar 

  • Driver JD, Holben WE, Rilling MC (2005) Characterization of glomalin as hyphal wall component of arbuscular mycorhizal fungi. Soil Biol Biochem 37(1):101–106

    CAS  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    CAS  Google Scholar 

  • Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG, (eds) Mycorrhizae and Plant Health, APS Press, St. Paul. pp 27–46

    Google Scholar 

  • Ebel RC, Duan X, Still DW, Augé RM (1997) Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol 135: 755–761

    CAS  Google Scholar 

  • Farquhar GD, Buckley TN, Miller JM (2002) Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fenn 36:625–637

    Google Scholar 

  • Feng G, Li XL, Zhang FS, Li SX (2000a) Effect of AM fungi on water and nutrition status of corn plants under salt stress. Chinease J Appl Ecol 11:595–598

    CAS  Google Scholar 

  • Feng G, Li XL, Zhang FS, Li SX (2000b) Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. J Plant Res Environ 9:22–26

    CAS  Google Scholar 

  • Feng G, Zhang FS (2003) Effect of arbuscualr mycorrhizal fungi on salinity tolerance of cotton. Chinease J Ecol Agr 11:21–24

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    PubMed  CAS  Google Scholar 

  • Franks P (2006) Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients. Plant Cell Environ 29:584–592

    PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induces nodule senescence in Cajanus cajan (Pigeonpea). J Plant Grow Regul 27:115–124

    CAS  Google Scholar 

  • George E (2000) Nutrient uptake. In : Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: Physiology and Function . Kluwer, Boston, pp 307–343

    Google Scholar 

  • Gernns H, von Alten H, Poehling HM (2001) AM-induced increase in activity of biotrophic leaf pathogens – is a compensation possible? Mycorrhiza 11:237–243

    CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecol 54:753–760

    CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    PubMed  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nicols K (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Poll 130(3): 317–323

    CAS  Google Scholar 

  • Gonzalez-Chavez MC, D’Haen J, Vangronsveld JJ, Docc JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240(2):287–297

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in non0halophytes. Ann Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms, In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function, Kluwer Academic Press, Boston, pp 239–262

    Google Scholar 

  • Hanson Z, Ting IP (1978) Responses of succulents to plant water stress. Plant Physiol 61:327–330

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • He ZL, Yang XE, Stofella PJ (2005) Trace elements in the agroecosystems and impacts on the environnent. J Trace Elements Med Biol 19(2–3):125–140

    CAS  Google Scholar 

  • Heath RL, Frederick PE, Cahmikias PE (1982) Ozone inhibition of photosynthesis in Chlorella sorokiniana. Plant Physio l69:229–233

    Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. J Soil Sci Soc Am 44:654–655

    CAS  Google Scholar 

  • Ho I, Trappe JM (1984) Effects of ozone exposure on mycorrhiza formation and growth of Festuca arundinacea. Environ Exp Bot 24(1):71–74

    CAS  Google Scholar 

  • Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gininazzi S, Schuepp H, (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem. Birkhduser Verlag, Basel, pp 190–200

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lazano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol 55:45–53

    Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Rattan S, Singh R (1993) Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Biochem 31:475–481

    CAS  Google Scholar 

  • Joner EJ, Briones R, Layval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226(2):227–234

    CAS  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U (1999) Selective elements deposits in maize colonized by a heavy metal tolerance conferring arbuscualr mycorrhizal fungus. J Plant Physiol 154:195–206

    Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewater: A review. Biores Technol 53(3):195–206

    CAS  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (1998) Response of tomatoes, a crop of determinate growth to soil salinity. Agicu Water Manag 38:59–68

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizosphere of plants growing on trace element contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    PubMed  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation-an enhanced form of phytoremediation. J Zhejiang University Sci B 7(7):503–514

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    PubMed  CAS  Google Scholar 

  • Kraigher H, Batic F, Agerer R (1996) Types of ectomycorrhizae and mycobioindication of forest site pollution. Phyton Annales Reebotanicae 36:115–120

    Google Scholar 

  • Krishna KG (2005) Mycorrhizas: a molecular analysis. Science Publishers, Inc., Plymouth

    Google Scholar 

  • Levitt J (1972) Responses of plants to Environmental Stresses. Academic Press, New York

    Google Scholar 

  • Leyval C, Haselwandter K, Turnau K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Linderman RC (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG, (eds) Mycorrhizae and plant health. American Phytopathological Society, St Paul, pp 1–27

    Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Press, pp 345–366

    Google Scholar 

  • MacMahon JA, Schimpf DJ (1981) Water as a factor in biology of North American Desert plants, In: Evans DD, Thames JL (eds) Water in desert ecosystems, US/IBP synthesis series. Dowden, Hurchinson and Ross Inc., Pennsylvania

    Google Scholar 

  • McCool PM, Menge JA, Taylor OC (1979) Effects of ozone and HCl gas on the development of the mycorrhizal fungus Glomus fasciculatum and growth of Troyer citrinage. J Amer Soc Hort Sci 104:151–154

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure,. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function, Kluwer Academic Publishers, Dordrecht, ISBN 0-7923-6444-9, pp 3–18

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittler R (2005) Abiotic stress, the field environment and stress combination. Trend Plant Sci 11:15–19

    Google Scholar 

  • Mohammed MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phophorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nut 26:125–137

    Google Scholar 

  • Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycolog Res 99:1429–1438

    CAS  Google Scholar 

  • Mosse B, Stribley DP, Le Tacon F (1981) The ecology of mycorrhizae and mycorrhizal fungi. In: Alexender M (ed) Advances in Microbial Biology, Plenum Press, New York, pp 137–210

    Google Scholar 

  • Munns R, Cramer GR, Ball MC (1999) Interactions between rising CO2, soil salinity and plant growth. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic Press, London, pp 139–167

    Google Scholar 

  • Nasim G, Bajwa R, Hakeem A (2007) Response of arbuscular mycorrhizal mungbean plants to ambient air pollution. Int J Environ Sci Technol 4(3):295–310

    CAS  Google Scholar 

  • Nelson TN, Safir GR (1982) Increased drought tolerance of mycorrhizal onion plants cased by improved phosphorus nutrition. Planta 154:407–413

    Google Scholar 

  • Okon IE, Osonubi O, Sanginga N (1996) Vesicular arbuscualr mycorrhiza effects on Fliricidia sepium and Senna siamae in a followed alley cropping system. Agrofores Sys 33:165–175

    Google Scholar 

  • Oliveira RS, Dodd JC, Castro PML (2001) The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialized region of Northern Portugal. Mycorrhiza 10(5):241–247

    CAS  Google Scholar 

  • Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546

    Google Scholar 

  • Passioura JB (2007) The drought environment: physical, biological, biological and agricultural perspectives. J Exp Bot 58(2):113–117

    PubMed  CAS  Google Scholar 

  • Peuss H 1958. Untersuchungen zur oekologie und Bedeutung der Tabakmycorrhiza. Arch Mikrobiol 29:112–142

    PubMed  CAS  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxident activities on mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    CAS  Google Scholar 

  • Puppi G, Tartnlini N (1991) Mycorrhizal types in three Mediterranean Communities affected by fire to different extent. Acta Oecol 12:295–304

    Google Scholar 

  • Rabie GH (2005) Influence of arbuscualr mycorhizal fungi and kinetin on the response of mungbean to irrigation with seawater. Mycorrhiza 15:225–230

    PubMed  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt- tolerance of Vicia faba plants under salinity stress. African J Biotechnol 4(3): 210–222

    CAS  Google Scholar 

  • Rillig MC, Allen MFn (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9(1):1–8

    Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativis L.) to salt stress. Environ Exp Bot 31: 313–318

    Google Scholar 

  • Ruiz-Lazano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plants 95:472–478

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomex M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus speceis in Lactuca sativa plants. Physiol Plant 98:767–772

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought - induce nodule senescence in soybean plants. New Phytol 151:493–502

    CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: Present and future challenges. Trends Plant Sci 10:297–304

    PubMed  CAS  Google Scholar 

  • Sanchez-Diaz M, Honorubia M (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizae on sustainable agriculture and natural ecosystems. Springer-Verlag, New York

    Google Scholar 

  • Sannazzaro AI, Oscar R, Edgardo A, Ana M (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    CAS  Google Scholar 

  • Schwartz, MW, Hoeksema, JD, Gehring CA., Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    PubMed  Google Scholar 

  • Shafer SR, Schoeneberger MM (1994) Air pollution and ecosystem health: the mycorrhizal connection. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, Minnesota. pp 153–188

    Google Scholar 

  • Sharma AK, Johri BN, Gianinazzi S (1992) Vesicular-arbuscular mycorrhizae on relation to plant disease. World J Microbiol Biotechnol 8:559–563

    Google Scholar 

  • Shaw PJA, Dighton J, Poskitt J (1992a) Studies on the mycorrhizal communities infecting trees in the Liphook forest fumigation experiment. Forest Ecol Manag 8:67–75

    Google Scholar 

  • Shaw PJA, Dighton J, Poskitt J (1992b) Studies on the effect of SO2 and O2 on the mycorrhizas of Scots pine by observation above and below ground, In: Read DJ, Lewis DH, Fitter AH, Alexender IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 208–213

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscualr mycorrhizae on photosynthesis and water status of maize plants under salt stress, Mycorrhiza 18:287–296

    PubMed  CAS  Google Scholar 

  • Shi LX, Guo JX (2006) Changes in photosynthetic and growth characteristics of Leymus chinensis community along the retrogression on the Songnen grassland in northeastern China. Photosynthetica 44:542–547

    Google Scholar 

  • Shi DC, Li YM, Yang GH, Li YD, Zhao KF (2002) A simulation of salt and alkali mixed ecological conditions and analysis of their stress factors in the seedlings of Aneurolepidium chinensis. Acta Ecol Sin 22:1323–1332

    Google Scholar 

  • Shuman LM (1985) Fractionation method for soil microelements. Soil Sci 140(1):11–22

    CAS  Google Scholar 

  • Singh SP, Singh S (1996) Interaction of Mycorrhizae with plant disease pathogens. Part I. Efficacy of mycorrhizal fungi as disease control agents. Mycorrhiza News 8:1–9

    Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Google Scholar 

  • Staddon PL, Fitter AH (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trees 13(11):455–458

    CAS  Google Scholar 

  • Staddon PL, Fitter AH, Robinson D (1999) Effects of mycorrhizal colonization and elevated atmospheric carbon dioxide on carbon fixation and below ground carbon partitioning in Plantago lanceolata. J Exp Biol 50:853–860

    CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum F. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • Stirzaker RJ, Passioura JB (1996) The water relations of the root-soil interface. Plant Cell Evriron 19:201–208

    Google Scholar 

  • Subramanian KS, Charest C (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol Plants 102:285–296

    CAS  Google Scholar 

  • Sylvia DM, Hartel P, Fuhrmann J, Zuberer D (eds) (2005) Principles and Applications of Soil Microbiology, 2nd edn. Prentice Hall, Upper Saddle River, p 638

    Google Scholar 

  • Sylvia DM, Williams SE (1992) Vesicualr arbuscular mycorrhizae and environmental stress. In: Bethlenfalvay GT, Linderman RD (eds) Mycorrhiza in sustainable agriculture. USA, Special Publication, Madison, pp 101–124

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer, Sunderland

    Google Scholar 

  • Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M, Sato M, Kaneko T, Tabata S, Parniske M (2007) Proteases in plant root symbiosis. Phytochemistry 68:111–121

    PubMed  CAS  Google Scholar 

  • Toermorshuizen AJ, Shaffers AP (1987) Occurrence of carpophores of ectomycorrhizal fungi in selected stands of Pinus sylvestris in the Netherlands in relation to stand vitality and air pollution. Plant Soil 104:209–217

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412

    PubMed  CAS  Google Scholar 

  • Turnau K (1998) Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in Southern Polland. Acta Soc Bot Pol 67:105–113

    CAS  Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi: An essential component of Soil Microflora in Ecosystem restoration. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts. Birkhauser, Basel, pp 137–149

    Google Scholar 

  • van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agr Water Manag 51:87–98

    Google Scholar 

  • Wang FY, Liu RJ (2001) A preliminary survey of arbuscular mycorrhizal fungi in saline alkaline soils of the Yellow river delta. Biodiv Sci 9:389–392

    Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198(1):97–107

    CAS  Google Scholar 

  • Xavier IJ, Boyetchko SM (2002) Arbuscualr mycorhizal fungi as biostimulants and bioprotectants of crops. In: Khachatouriand GG, Arora DK (eds) Applied mycology and biotechnology. vol. 2: agriculture and food production. Elsevier, Amsterdam, pp 311–330

    Google Scholar 

  • Yano-melo AM, Aggin OJ, Casta ML (2003) Tolerance of mycorrhizal banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agr Ecosys Environ 95:343–348

    Google Scholar 

  • Zandavalli RB, Dillenburg LR, de Souza PVD (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25:245–255

    Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51(5):686–693

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazala Nasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nasim, G. (2010). The Role of Arbuscualr Mycorrhizae in Inducing Resistance to Drought and Salinity Stress in Crops. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_6

Download citation

Publish with us

Policies and ethics