Skip to main content

Biogeochemistry of Urban Forests

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

The biogeochemistry of urban forests is strongly influenced by the urban environment. Precipitation beneath the canopy of trees is enriched by dry deposition abundant in an urban atmosphere. The litterfall production depends on the soil fertility and available water of urban forests just like the rural forests. The rates of literfall decomposition are retarded by air pollution and high ratios of C/N but migration of earthworms from nearby gardens and high rates of N deposition can offset the retardation. The tree biomass cannot be calculated through known equations derived from rural forests. New equations have to be constructed. Urban forests have to be monitored in time and include various rates of disturbance common in urban lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves C, Pio C, Duarte A (1999) The organic composition of air particulate matter from rural and urban Portuguese area. Phys Chem Earth B 6:705–709

    Google Scholar 

  • Anatolaki C, Tsitouridou R (2007) Atmospheric deposition of nitrogen, sulphur and chloride in Thessaloniki, Greece. Atmos Res 85:413–428

    Article  Google Scholar 

  • Baxter J, Pickett STA, Dighton J et al (2002) Nitrogen and phosphorus availability in oak forest stands exposed to contrasting anthropogenic impacts. Soil Biol Biochem 34:623–633

    Article  Google Scholar 

  • Berthier E, Andrieu H, Creutin JD (2004) The role of soil in the generation of urban runoff: development and evaluation of a 2D model. J Hydrol 299:252–266

    Google Scholar 

  • Bredemeier M (1988) Forest canopy transformation of atmospheric deposition. Water Air Soil Pollut 40:121–138

    Google Scholar 

  • Chiwa M, Oshiro N, Miyake T et al (2003) Dry deposition wash off and dew on the surfaces of pine foliage on the urban- and mountain-facing sides of Mt. Gokurakuji, western Japan. Atmos Environ 37:327–337

    Article  Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, London, pp 381–409

    Google Scholar 

  • Cotrufo MF, De Santo AV, Alfani A et al (1995) Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environ Pollut 89:81–87

    Article  Google Scholar 

  • Dyck WJ, Bow CA (1992) Environmental impacts of harvesting. Biomass Bioenergy 2:173–191

    Article  Google Scholar 

  • Fitter AH, Hay RKM (1987) Environmental physiology of plants. Academic Press, New York

    Google Scholar 

  • Forti MC, Bourotte C, Cicco V et al (2007) Fluxes of solutes in two catchments with contrasting deposition loads in Atlantic Forest (Serra do Mar /SP-Brazil). Appl Geochem 22:1149–1156

    Article  Google Scholar 

  • Fowler D (1980) Removal of sulphur and nitrogen compounds from the atmosphere in rain and by dry deposition. In: Drabløs D, Tollan A (eds) Ecological impact of acid precipitation. SNSF Project, Oslo, pp 22–32

    Google Scholar 

  • Gates GE (1976) More on oligochaete distribution in North America. Megadrilogica 2:1–8

    Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1976) Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook forest. Oecologia 22:305–320

    Article  Google Scholar 

  • Groffman PM, Pouyat RV, Cadenasso ML et al (2006) Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For Ecol Manage 236:177–192

    Article  Google Scholar 

  • Hanson PJ, Linberg SE (1991) Dry deposition of reactive nitrogen compounds. Atmos Environ 25A:1615–1634

    Google Scholar 

  • Harrington TB, Edwards MB (1999) Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantation. Can J For Res 29:1055–1064

    Article  Google Scholar 

  • Huber A, Irume A (2001) Variability of annual rainfall partitioning for different sites and forest covers in Chile. J Hydrol 248:78–92

    Article  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB et al (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199

    Article  Google Scholar 

  • Kimmins JP (1996) Forest ecology. A foundation for sustainable management. Prentice-Hall, New Jersey

    Google Scholar 

  • Kolka RK, Grigal DF, Natter EA (1996) Forest soil mineral weathering rates: use of multiple approaches. Geoderma 73:1–21

    Article  Google Scholar 

  • Lee DS (1993) Spatial variability of urban precipitation chemistry and deposition: statistical associations between constituents and potential removal processes of precursor species. Atmos Environ 27B:321–337

    Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer, New York

    Google Scholar 

  • Lindberg SE, Lovett GM, Richter DD et al (1986) Atmospheric deposition and canopy interactions for conifer of major ions in a forest. Science 231:141–145

    Article  Google Scholar 

  • Lohse KA, Hope D, Sponseller R et al (2008) Atmospheric deposition of carbon and nutrients across an arid metropolitan area. Sci Tot Environ 402:95–105

    Article  Google Scholar 

  • McDonnel MJ, Pickett STA (1990) The study of ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71:1231–1237

    Article  Google Scholar 

  • McHale MR, Burke IC, Lefscy MA et al (2009) Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst 12:95–113

    Article  Google Scholar 

  • Michopoulos P, Baloutsos G, Economou A et al (2004) Effects of nitrogen deposition on nitrogen cycling in an Aleppo pine stand in Athens, Greece. Sci Tot Environ 323:211–218

    Article  Google Scholar 

  • Michopoulos P, Baloutsos G, Economou A et al (2005) Biogeochemistry of lead in an urban forest in Athens, Greece. Biogeochemistry 73:345–357

    Article  Google Scholar 

  • Michopoulos P, Baloutsos G, Economou A et al (2007a) Bulk and throughfall deposition chemistry in three different forest ecosystems. Fres Environ Bulletin 16:91–98

    Google Scholar 

  • Michopoulos P, Baloutsos G, Economou A et al (2007b) Nutrient cycling and foliar status in an urban pine forest in Athens, Greece. Plant Soil 294:31–39

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2006) Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol Plantar 50:373–382

    Article  Google Scholar 

  • Pavao-Zuckerman MA, Colemman DC (2005) Decomposition of chestnut oak (Quercus prinus) leaves and nitrogen mineralization in an urban environment. Biol Fertil Soils 41:343–349

    Article  Google Scholar 

  • Pouyat RV, Parmelee RW, Carreiro MM (1994) Environmental effects of forest soil-invertebrate and fungal densities in oak stands along an urban-rural land use gradient. Pedobiologia 38:385–399

    Google Scholar 

  • Pouyat RV, McDonnell MJ, Pickett STA (1997) Litter decomposition and nitrogen mineralization in oak stands along an urban-rural land use gradient. Urban Ecosyst 1:117–131

    Article  Google Scholar 

  • Rowntree RA (1984) Ecology of the urban forest – introduction to Part I. Urban Ecol 8:1–11

    Article  Google Scholar 

  • Salm C, Reinds GJ, de Vries W (2007) Water balances in intensively monitored forest ecosystems in Europe. Environ Pollut 148:201–212

    Article  Google Scholar 

  • Sanders RA (1986) Urban vegetation impacts on the hydrology of Dayton, Ohio. Urban Ecol 9:361–376

    Article  Google Scholar 

  • Shepherd JM (2006) Evidence of urban-induced precipitation variability in arid climate. J Arid Environ 67:607–628

    Article  Google Scholar 

  • Singh RK, Dutta RK, Agrawal M (2004) Litter decomposition and nutrient release in relation to atmospheric deposition of S and N in a dry tropical region. Pedobiologia 48:305–311

    Article  Google Scholar 

  • Steinberg DA, Pouyat RV, Parmelee RW et al (1997) Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient. Soil Biol Biochem 29:427–430

    Article  Google Scholar 

  • Tyler G, PÃ¥hlsson MB, Bengstsson G et al (1989) Heavy metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Pollut 49:189–215

    Article  Google Scholar 

  • Vestgarden LS (2001) Carbon and nitrogen turnover in the early stage of Scots pine (Pinus silvestris L.) needle litter decomposition effects of internal and external nitrogen. Soil Biol Biochem 37:63–75

    Google Scholar 

  • Vogt KA, Publicvover DA, Bloomfield J et al (1993) Belowground responses as indicators of environmental change. Environ Exp Bot 33:189–205

    Article  Google Scholar 

  • Warfvinge P, Sverdrup H (1992) Calculating critical loads of acid deposition with PROFILE – a steady state soil chemistry model. Water Air Soil Pollut 63:119–143

    Article  Google Scholar 

  • White CS, McDonnel MJ (1988) Nitrogen cycling processes and soil characteristics in an urban versus rural forest. Biogeochemistry 5:243–262

    Article  Google Scholar 

  • Xiao QF, McPherson EG (2002) Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst 291:291–302

    Article  Google Scholar 

  • Xiao QF, McPherson EG, Ustin SL et al (2000) A new approach to modelling tree rainfall interception. J Geophys Res 105:29173–29188

    Article  Google Scholar 

  • Zhu WX, Carreiro MM (2004) Temporal and spatial variations in nitrogen transformations in deciduous forest ecosystem along an urban-rural gradient. Soil Biol Biochem 36:267–278

    Article  Google Scholar 

  • Zhu P, Zhang Y (2008) Demand for urban forests in United States cities. Landscape Urban Plan 84:293–300

    Article  Google Scholar 

  • Zipperer WC, Foresman TW, Sisinni SM et al (1997) Urban tree cover: an ecological perspective. Urban Ecosyst 1:229–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Michopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Michopoulos, P. (2011). Biogeochemistry of Urban Forests. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_16

Download citation

Publish with us

Policies and ethics