Skip to main content
  • 1495 Accesses

Abstract

The exact solutions of wave equations with a spherically symmetric potential have become an important subject in quantum mechanics. It should be noticed that many works along this line have been carried out in the usual three dimensional space. However, what extra dimensions could there possibly be if we never see them? It turns out that we do not really know yet how many dimensions our world has. Nevertheless, all that our current observations tell us is that the world around us is at least (3+1) dimensional space-time as illustrated in general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The theory was first proposed by the Finnish physicist Gunnar Nordström in 1914. Before Einstein’s general relativity theory was presented, Nordström proposed a relativistic theory for gravity. He unified his gravity theory with Maxwell’s electromagnetism through introducing a 5-vector gauge field where the first four components are identified with Maxwell’s vector potential A μ and the 5th component with the scalar gravity field. After that in 1919 a German mathematician Theodor Kaluza performed similar calculations but with Einstein’s gravity theory and Maxwell’s electromagnetism. In terms of a circular extra dimension Kaluza obtained a 4-dimensional action from a 5-dimensional one. The 4-action contained a graviton, an Abelian gauge boson identified as the photon and a scalar field that Kaluza put to be constant. The resulting equations can be separated out into further sets of equations, one of which is equivalent to Einstein’s field equations, another set equivalent to Maxwell’s equations for electromagnetic field and the final part an extra scalar field now termed the “radian”. In 1926, it was Swedish physicist Oskar Klein who focused on the resulting higher modes of the particles and the size of the extra dimension [7].

  2. 2.

    This is just like an insect crawling on a sheet of paper. For this insect, the universe is pretty much two-dimensional since it cannot leave the surface of that paper. As a result, the insect only knows the surface, but up and down does not make any sense as long as it has to stay on the sheet of that paper. These extra spatial dimensions, if they really exist, are thought to be curled-up, or “compactified”.

  3. 3.

    It was first proposed by Levinson in 1949 [109] and reviewed by Ma [110]. The Levinson theorem establishes the relation between the number of the bound states and the phase shift of the scattering states at the zero momentum.

References

  1. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics-Nonrelativistic Theory, 3rd edn. Pergamon, New York (1977)

    Google Scholar 

  3. Dong, S.H.: Factorization Method in Quantum Mechanics. Springer, Netherlands (2007)

    MATH  Google Scholar 

  4. Bagrov, V.G., Gitman, D.M.: Exact Solutions of Relativistic Wave Equations. Kluwer Academic, Dordrecht (1990)

    MATH  Google Scholar 

  5. ter Haar, D.: Problems in Quantum Mechanics, 3rd edn. Pion, London (1975)

    Google Scholar 

  6. Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971)

    Google Scholar 

  7. Appelquist, T., Chodos, A., Freund, P.: Modern Kaluza-Klein Theories. Addison-Wesley, Reading (1987)

    MATH  Google Scholar 

  8. Nordstrom, G.: On the possibility of unifying the electromagnetic and the gravitational fields. Z. Phys. 15, 504–506 (1914)

    Google Scholar 

  9. Kaluza, T.: Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. Kl. 1, 966–972 (1921)

    Google Scholar 

  10. Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37(12), 895–906 (1926)

    Article  ADS  Google Scholar 

  11. Klein, O.: The atomicity of electricity as a quantum theory law. Nature 118, 516 (1926)

    Article  ADS  Google Scholar 

  12. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998)

    Article  ADS  Google Scholar 

  13. Louck, J.D., Shaffer, W.H.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part I. The twofold degenerate oscillator. J. Mol. Spectrosc. 4, 285–297 (1960)

    Article  ADS  Google Scholar 

  14. Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part II. The n-fold degenerate oscillator. J. Mol. Spectrosc. 4, 298–333 (1960)

    Article  ADS  Google Scholar 

  15. Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part III. Radial integrals. J. Mol. Spectrosc. 4, 334–341 (1960)

    Article  ADS  Google Scholar 

  16. Appel, P., Kampé de Fériet, J.: Fonctions Hypergéométrique et Hypersphériques Polynomes d’Hermite, p. 202. Gauthier-Villars, Paris (1926)

    Google Scholar 

  17. Fock, V.: Zur Theorie des Wasserstoffatoms. Z. Phys. 98, 145–154 (1935)

    Article  ADS  MATH  Google Scholar 

  18. Bargmann, V.: Zur Theorie des Wasserstoffatoms. Bemerkungen zur gleichamigen Arbeit von V. Foch. Z. Phys. 99, 576–582 (1936)

    Article  ADS  Google Scholar 

  19. Sommerfeld, A.: Partial Differential Equation in Physics, p. 227. Academic Press, New York (1949)

    Google Scholar 

  20. Erdélyi, A.: Higher Transcendental Functions, vol. 2, Bateman Manuscript Project, p. 232. McGraw-Hill, New York (1953)

    Google Scholar 

  21. Bander, M., Itzykson, C.: Group theory and the hydrogen atom (I). Rev. Mod. Phys. 38, 330–345 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  22. Shaffer, W.H.: Degenerate modes of vibration and perturbations in polyatomic molecules. Rev. Mod. Phys. 16, 245–259 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  23. Baker Jr., G.A.: Degeneracy of the n-dimensional, isotropic, harmonic oscillator. Phys. Rev. 103, 1119–1120 (1956)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Alliluev, S.P.: On the relations between accidental degeneracy and hidden symmetry of a system. Sov. Phys. JETP 6, 156–159 (1958)

    ADS  Google Scholar 

  25. Rasmussen, W.O., Salamó, S.: An algebraic approach to Coulomb scattering in N dimensions. J. Math. Phys. 20, 1064–1067 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. Al-Jaber, S.M.: Quantization of angular momentum in the N-dimensional space. Nuovo Cimento B 110, 993–995 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  27. Al-Jaber, S.M.: On the radial-part equation of the wavefunction in N dimensions. Nuovo Cimento B 112, 761–765 (1997)

    Google Scholar 

  28. Al-Jaber, S.M.: The fine structure of the N-dimensional hydrogen atom. Nuovo Cimento B 113, 651–657 (1998)

    ADS  Google Scholar 

  29. Al-Jaber, S.M.: Hydrogen atom in N dimensions. Int. J. Theor. Phys. 37, 1289–1298 (1998)

    Article  MATH  Google Scholar 

  30. de Broglie, L., Bohm, D., Hillion, P., Halbwachs, F., Takabayasi, T., Vigier, J.P.: Rotator model of elementary particles considered as relativistic extended structures in Minkowski space. Phys. Rev. 129, 438–450 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  31. Granzow, K.: N-dimensional total orbital angular-momentum operator. II. Explicit representations. J. Math. Phys. 5(10), 1474–1477 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bergmann, D., Frishman, Y.: A relation between the hydrogen atom and multidimensional harmonic oscillators. J. Math. Phys. 6(12), 1855–1856 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  33. Čížek, J., Paldus, J.: An algebraic approach to bound states of simple one-electron systems. Int. J. Quant. Chem. 12, 875–896 (1977)

    Article  Google Scholar 

  34. Kostelecky, V.A., Nieto, M.M., Truax, D.R.: Supersymmetry and the relationship between the Coulomb and oscillator problems in arbitrary dimensions. Phys. Rev. D 32, 2627–2633 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  35. Balantekin, A.B.: Accidental degeneracies and supersymmetric quantum mechanics. Ann. Phys. 164(2), 277–287 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kostelecky, V.A., Russell, N.: Radial Coulomb and oscillator systems in arbitrary dimensions. J. Math. Phys. 37, 2166–2181 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Zeng, G.J., Su, K.L., Li, M.: Most general and simplest algebraic relationship between energy eigenstates of a hydrogen atom and a harmonic oscillator of arbitrary dimensions. Phys. Rev. A 50(5), 4373–4375 (1994)

    Article  ADS  Google Scholar 

  38. Lévai, G., Kónya, B., Papp, Z.: Unified treatment of the Coulomb and harmonic oscillator potentials in D dimensions. J. Math. Phys. 39, 5811 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Shea, R.W., Aravind, P.K.: Degeneracies of the spherical well, harmonic oscillator and hydrogen atom in arbitrary dimensions. Am. J. Phys. 64(4), 430 (1996)

    Article  ADS  Google Scholar 

  40. Jafarizadeh, M.A., Goudarzi, H.: Degeneracy of Schrödinger equation with potential 1/r in d-dimensions. Indian J. Phys. B 72(1), 35–44 (1998)

    Google Scholar 

  41. Kirchberg, A., Länge, J.D., Pisani, P.A.G., Wipf, A.: Algebraic solution of the supersymmetric hydrogen atom in d dimensions. Ann. Phys. 303(2), 359–388 (2003)

    Article  ADS  MATH  Google Scholar 

  42. Witwit, M.R.M.: The eigenvalues of the Schrödinger equation for spherically symmetric states for various types of potentials in two, three and N dimensions, by using perturbative and non-perturbative methods. J. Phys. A, Math. Gen. 24(19), 4535 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. Imbo, T., Pagnamenta, A., Sukhatme, U.: Energy eigenstates of spherically symmetric potentials using the shifted 1/N expansion. Phys. Rev. D 29, 1669–1681 (1984)

    Article  ADS  Google Scholar 

  44. Imbo, T., Sukhatme, U.: Shifted 1/N expansions for energy eigenvalues of the Schrödinger equation. Phys. Rev. D 28, 418–420 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  45. Imbo, T., Sukhatme, U.: Improved wavefunctions for large-N expansions. Phys. Rev. D 31, 2655–2658 (1985)

    Article  ADS  Google Scholar 

  46. Varshni, Y.P.: Eigenenergies of the r 2+λr 2/(1+gr 2) potential obtained by the shifted 1/N expansion. Phys. Rev. A 36, 3009–3014 (1987)

    Article  ADS  Google Scholar 

  47. Roychoudhury, R.K., Varshni, Y.P.: Shifted 1/N expansion and exact solutions for the potential V(r)=−Z/r+gr+λr 2. J. Phys. A, Math. Gen. 21, 3025 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  48. Roychoudhury, R.K., Varshni, Y.P.: Rotating oscillator-shifted 1/N expansion and supersymmetric considerations. Phys. Rev. A 37, 2309–2313 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  49. Christiansen, H., Epele, L.N., Fanchiotte, H., Garcia Canal, C.A.: Improved shifted 1/N expansion. Phys. Rev. A 40, 1760–1764 (1989)

    Article  ADS  Google Scholar 

  50. Dutt, R., Mukherji, U., Varshni, Y.P.: Shifted large-N expansion for the bound states of the Hellmann potential. Phys. Rev. A 34, 777–784 (1986)

    Article  ADS  Google Scholar 

  51. Papp, E.: Quasiclassical approach to the shifting parameter of the 1/N method. Phys. Rev. A 36, 3550–3555 (1987)

    Article  ADS  Google Scholar 

  52. Atag, S.: Application of the shifted 1/N expansion to the rotational-vibrational states of the \(\mathrm{H}_{2}^{+}\) molecule. Phys. Rev. A 37, 2280–2283 (1988)

    Article  ADS  MATH  Google Scholar 

  53. Chatterjee, A.: Large-N expansions in quantum mechanics. Phys. Rep. 186, 249–370 (1990)

    Article  ADS  Google Scholar 

  54. Hakobyan, Ye.M., Pogosyan, G.S., Sissakian, A.N.: Generalized D-dimensional oscillator: interbasis expansions. Phys. At. Nucl. 61, 1762–1767 (1998)

    MathSciNet  Google Scholar 

  55. Papp, E.: q analogs of the radial Schrödinger equation in N space dimensions. Phys. Rev. A 52, 101–106 (1995)

    Article  ADS  Google Scholar 

  56. Mlodinov, L.D., Papanicolaou, N.: SO(2,1) algebra and the large N expansion in quantum mechanics. Ann. Phys. 128, 314–334 (1980)

    Article  ADS  Google Scholar 

  57. Gerry, C.C., Togeas, J.B.: A large-N phase integral approximation of Coulomb-type systems using SO(2,1) coherent states. J. Phys. A, Math. Gen. 19, 3797 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Yáñez, R.J., Van Assche, W., Dehesa, J.S.: Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 50, 3065–3079 (1994)

    Article  ADS  Google Scholar 

  59. Wódkiewicz, K.: Fermi pseudopotential in arbitrary dimensions. Phys. Rev. A 43, 68–76 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  60. Romera, E., Sánchez-Moreno, P., Dehesa, J.S.: Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J. Math. Phys. 47, 103504 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  61. Bender, C.M., Boettcher, S.: Dimensional expansion for the Ising limit of quantum field theory. Phys. Rev. D 48, 4919–4923 (1993)

    Article  ADS  Google Scholar 

  62. Bender, C.M., Milton, K.A.: Scalar Casimir effect for a D-dimensional sphere. Phys. Rev. D 50, 6547–6555 (1994)

    Article  ADS  Google Scholar 

  63. Romeo, A.: Multidimensional extension of a Wentzel-Kramers-Brillouin improvement for spherical quantum billiard zeta functions. J. Math. Phys. 36, 4005 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Nieto, M.M.: Existence of bound states in continuous 0<D<∞ dimensions. Phys. Lett. A 293, 10–16 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. Gönül, B., Özer, O., Kocak, M., Tutcu, D., Cancelik, Y.: Supersymmetry and the relationship between a class of singular potentials in arbitrary dimensions. J. Phys. A, Math. Gen. 34, 8271 (2001)

    Article  ADS  MATH  Google Scholar 

  66. Gómez, F.J., Sesma, J.: Bound states and resonances in sombrero potentials. Phys. Lett. A 286, 395–400 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Camblong, H.E., Epele, L.N., Franchiotti, H., Canal García, C.A.: Renormalization of the inverse square potential. Phys. Rev. Lett. 85, 1590–1593 (2000)

    Article  ADS  Google Scholar 

  68. Nouri, S.: Generalized coherent states for the d-dimensional Coulomb problem. Phys. Rev. A 60, 1702–1705 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  69. Mustafa, O., Habib Mazharimousavi, S.: Quantum particles trapped in a position-dependent mass barrier; a d-dimensional recipe. Phys. Lett. A 358, 259–261 (2006)

    Article  ADS  MATH  Google Scholar 

  70. Gönül, B., Koçak, M.: Explicit solutions for N-dimensional Schrödinger equation with position-dependent mass. J. Math. Phys. 47, 102101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  71. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  72. Burgbacher, F., Lämmerzahl, C., Macias, A.: Is there a stable hydrogen atom in higher dimensions? J. Math. Phys. 40, 625 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Zhao, W.Q.: Relation between dimension and angular momentum for radially symmetric potential in N-dimensional space. Commun. Theor. Phys. 46, 429 (2006)

    Article  Google Scholar 

  74. López-Rosa, S., Manzano, D., Dehesa, J.S.: Complexity of D-dimensional hydrogenic systems in position and momentum spaces. Physica A 388, 3273 (2009)

    Article  ADS  Google Scholar 

  75. Quesne, C.: First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Ann. Phys. 321, 1221–1239 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Kuru, S., Teǧmen, A., Vercin, A.: Intertwined isospectral potentials in an arbitrary dimension. J. Math. Phys. 42(8), 3344 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  77. Friedberg, R., Lee, T.D., Zhao, W.Q.: Convergent iterative solutions for a Sombrero-shaped potential in any space dimension and arbitrary angular momentum. Ann. Phys. 321(8), 1981–2015 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  78. Hosoya, H.: Hierarchical structure of the atomic orbital wavefunctions of D-dimensional atom. J. Phys. Chem. 101, 418–421 (1997)

    Google Scholar 

  79. Dunn, M., Watson, D.K.: Continuation of the Schrödinger equation for higher angular-momentum states to D dimensions and interdimensional degeneracies. Few-Body Syst. 21, 187–209 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  80. Dunn, M., Watson, D.K.: Continuation of the wave function for higher angular momentum states to D-dimensions: I. The generalized Schwartz expansion. Ann. Phys. 251, 266–318 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  81. Weyl, H.: The Classical Groups. Princeton University Press, Princeton (1939)

    Google Scholar 

  82. Gu, X.Y., Duan, B., Ma, Z.Q.: Quantum three-body system in D dimensions. J. Math. Phys. 43, 2895 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. Gu, X.Y., Ma, Z.Q., Duan, B.: Interdimensional degeneracies for a quantum three-body system in D dimensions. Phys. Lett. A 307, 55–59 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  84. Gu, X.Y., Ma, Z.Q., Sun, J.Q.: Interdimensional degeneracies for a quantum N-body system in D dimensions. Europhys. Lett. 64, 586 (2003)

    Article  ADS  Google Scholar 

  85. Gu, X.Y., Ma, Z.Q., Sun, J.Q.: Quantum four-body system in D dimensions. J. Math. Phys. 44, 3763 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Duan, B., Gu, X.Y., Ma, Z.Q.: Energy levels of P-wave states for a D-dimensional helium atom. Phys. Lett. A 322, 96–104 (2004)

    Article  ADS  MATH  Google Scholar 

  87. Nieto, M.M.: Hydrogen atom and relativistic pi-mesic atom in N-space dimensions. Am. J. Phys. 47, 1067 (1979)

    Article  ADS  Google Scholar 

  88. Joseph, A.: Self-adjoint ladder operators (I). Rev. Mod. Phys. 39, 829–837 (1967)

    Article  ADS  MATH  Google Scholar 

  89. Coulson, C.A., Joseph, A.: Self-adjoint ladder operators. II. Rev. Mod. Phys. 39, 838–849 (1967)

    Article  ADS  MATH  Google Scholar 

  90. Joseph, A.: Self-adjoint ladder operators. III. Rev. Mod. Phys. 40, 845–871 (1968)

    Article  ADS  Google Scholar 

  91. Gu, X.Y., Ma, Z.Q., Dong, S.H.: Exact solutions to the Dirac equation for a Coulomb potential in D+1 dimensions. Int. J. Mod. Phys. E 11(4), 335–346 (2002)

    Article  ADS  Google Scholar 

  92. Bollini, C.G., Giambiagi, J.J.: Generalized Klein-Gordon equations in d dimensions from supersymmetry. Phys. Rev. D 32(12), 3316–3318 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  93. Chatterjee, A.: Large-N solution of the Klein-Gordon equation. J. Math. Phys. 27, 2331 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  94. Roychoudhury, R.K., Varshni, Y.P.: Shifted 1/N expansion and scalar potential in the Dirac equation. J. Phys. A, Math. Gen. 20, L1083 (1987)

    Article  ADS  Google Scholar 

  95. Atag, S.: Large-N iterative solution of the Dirac equation. J. Math. Phys. 30, 696 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  96. Panja, M.M., Dutt, R.: Shifted large-N expansion for the energy levels of relativistic particles. Phys. Rev. A 38, 3937–3943 (1988)

    Article  ADS  Google Scholar 

  97. Mustafa, O., Sever, R.: Approach to the shifted 1/N expansion for the Klein-Gordon equation. Phys. Rev. A 43, 5787–5789 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  98. Mustafa, O., Sever, R.: Shifted 1/N expansion for the Klein-Gordon equation with vector and scalar potentials. Phys. Rev. A 44, 4142–4144 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  99. Lin, D.H.: The path integration of a relativistic particle on a D-dimensional sphere. J. Phys. A, Math. Gen. 30, 3201 (1997)

    Article  ADS  MATH  Google Scholar 

  100. Dong, S.H., Gu, X.Y., Ma, Z.Q., Yu, J.: The Klein-Gordon equation with a Coulomb potential in D dimensions. Int. J. Mod. Phys. E 12, 555–565 (2003)

    Article  ADS  Google Scholar 

  101. Saad, N., Hall, R.L., Ciftci, H.: The Klein-Gordon equation with the Kratzer potential in d dimensions. Cent. Eur. J. Phys. 6, 717–729 (2008)

    Article  Google Scholar 

  102. Oyewumi, K.J., Akinpelu, F.O., Agboola, A.D.: Exactly complete solutions of the pseudoharmonic potential in N-dimensions. Int. J. Theor. Phys. 47(4), 1039–1057 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  103. Hall, R.L., Aliyu, M.D.: Comparison theorems for the Klein-Gordon equation in d dimensions. Phys. Rev. A 78, 052115 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  104. Dong, S.H.: The Dirac equation with a Coulomb potential in D dimensions. J. Phys. A, Math. Gen. 36, 4977 (2003)

    Article  ADS  MATH  Google Scholar 

  105. Dong, S.H., Sun, G.H., Popov, D.: Group theory approach to the Dirac equation with a Coulomb plus scalar potential in D+1 dimensions. J. Math. Phys. 44, 4467–4479 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  106. Ma, Z.Q., Dong, S.H., Gu, X.Y., Yu, J.: The Klein-Gordon equation with a Coulomb plus scalar potential in D dimensions. Int. J. Mod. Phys. E 13, 597–610 (2004)

    Article  ADS  Google Scholar 

  107. Wang, L.Y., Gu, X.Y., Ma, Z.Q., Dong, S.H.: Exact solutions to D-dimensional Schrödinger equation with a pseudoharmonic oscillator. Found. Phys. Lett. 15, 569–576 (2002)

    Article  MathSciNet  Google Scholar 

  108. Dong, S.H., Sun, G.H.: The Schrödinger equation with a Coulomb plus inverse-square potential in D dimensions. Phys. Scr. 70, 94–97 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Levinson, N.: On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 25(9), 1–29 (1949)

    MathSciNet  Google Scholar 

  110. Ma, Z.Q.: The Levinson theorem. J. Phys. A, Math. Gen. 39(48), R625 (2006)

    Article  ADS  MATH  Google Scholar 

  111. Gu, X.Y., Ma, Z.Q., Dong, S.H.: Levinson theorem for the Dirac equation in D+1 dimensions. Phys. Rev. A 67, 062715 (2003)

    Article  ADS  Google Scholar 

  112. Dong, S.H., Ma, Z.Q.: Nonrelativistic Levinson’s theorem in D dimensions. Phys. Rev. A 65, 042717 (2002)

    Article  ADS  Google Scholar 

  113. Dong, S.H., Lozada-Cassou, M.: Generalized hypervirial and recurrence relations for radial matrix elements in arbitrary dimensions. Mod. Phys. Lett. A 20, 1533–1540 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  114. Dong, S.H., Chen, C.Y., Lozada-Cassou, M.: Generalized hypervirial and Blanchard’s recurrence relations for radial matrix elements. J. Phys. B, At. Mol. Opt. Phys. 38, 2211–2220 (2005)

    Article  ADS  Google Scholar 

  115. Lin, D.H.: Friedel theorem for Dirac fermions in D dimensions. Phys. Rev. A 74, 032109 (2006)

    Article  ADS  Google Scholar 

  116. Lin, D.H.: Friedel sum rule, Levinson theorem, and the Atiyah-Singer index. Phys. Rev. A 75, 032115 (2007)

    Article  ADS  Google Scholar 

  117. Cotǎescu, I.I.: Remarks on the quantum modes of the scalar field on AdS d+1 spacetime. Phys. Rev. D 60, 107504 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  118. Cotǎescu, I.I., Cotǎescu, I.I.: Geometric models of (d+1)-dimensional relativistic rotating oscillators. J. Math. Phys. 41(11), 7290 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  119. Saharian, A.A.: Wightman function and vacuum fluctuations in higher dimensional brane models. Phys. Rev. D 73, 044012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  120. Kenmoku, M., Ishimoto, K., Nandi, K.K., Shigemoto, K.: Scalar field contribution to rotating black hole entropy. Phys. Rev. D 73, 064004 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  121. Chatillon, N., Macesanu, C., Trodden, M.: Brane cosmology in an arbitrary number of dimensions. Phys. Rev. D 74, 124004 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  122. Saa, A.: N-dimensional Vaidya metric with a cosmological constant in double-null coordinates. Phys. Rev. D 75, 124019 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  123. Goswami, R., Joshi, P.S.: Spherical gravitational collapse in N dimensions. Phys. Rev. D 76, 084026 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  124. Bouaziz, D., Bawin, M.: Singular inverse square potential in arbitrary dimensions with a minimal length: application to the motion of a dipole in a cosmic string background. Phys. Rev. A 78, 032110 (2008)

    Article  ADS  Google Scholar 

  125. Elizalde, E., Odintsov, S.D., Saharian, A.A.: Repulsive Casimir effect from extra dimensions and Robin boundary conditions: from branes to pistons. Phys. Rev. D 79, 065023 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  126. Chow, D.D.K., Cvetič, M., Lü, H., Pope, C.N.: Extremal black hole/CFT correspondence in (gauged) supergravities. Phys. Rev. D 79, 084018 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  127. Rogatko, M., Szyplowska, A.: Massive fermion emission from higher dimensional black holes. Phys. Rev. D 79, 104005 (2009)

    Article  ADS  Google Scholar 

  128. Belhai, A., Díaz, P., Seguí, A.: Magnetic and electric black holes in arbitrary dimensions. Phys. Rev. D 80, 044015 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  129. Guo, Z.Q., Ma, B.Q.: Fermion families from two layer warped extra dimensions. J. High Energy Phys. 0808, 065 (2008)

    Article  ADS  Google Scholar 

  130. Konoplya, R.A.: Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach. Phys. Rev. D 68, 024018 (2003)

    Article  ADS  Google Scholar 

  131. Melko, R., Mann, R.B.: Studies of the Schroedinger-Newton equations in D dimensions. arXiv:gr-qc/0011004v1 (2000)

  132. Kunz, J., Maison, D., Navarro-Léida, F., Viebahn, J.: Rotating Einstein-Maxwell-Dilaton black holes in D dimensions. Phys. Lett. B 639, 95 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  133. Canfora, F., Giacomini, A., Zerwekh, A.R.: Kaluza-Klein theory in the limit of large number of extra dimensions. Phys. Rev. D 80, 084039 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  134. Kunstatter, G., Lee, H.C., Leivo, H.P.: Gauge invariance of the one-loop effective potential in M d×S 1 Kaluza-Klein theory. Phys. Rev. D 33(4), 1018–1026 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Shiraishi, K.: Multicentered solution for maximally charged dilaton black holes in arbitrary dimensions. J. Math. Phys. 34(4), 1480 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Introduction. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_1

Download citation

Publish with us

Policies and ethics