Skip to main content

Schrödinger Equation with Position-Dependent Mass

  • Chapter
Wave Equations in Higher Dimensions
  • 1596 Accesses

Abstract

Generally speaking, the effective mass is taken as a constant in the traditional wave equations. Recently, the study of the non-relativistic equation with the position-dependent effective mass has attracted a lot of attention to many authors. This is because such systems have been found to have wide applications in various fields such as the electronic properties of the semiconductors, 3He clusters, quantum wells, wires and dots, quantum liquids, the graded alloys, semiconductor heterostructures and others. Recently, the algebraic method has also been used to study these systems. In this Chapter, we first employ a point canonical transformation to study the D-dimensional position-dependent effective mass Schrödinger equation and then carry out two typical examples such as the harmonic oscillator and Coulomb potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gönül, B., Koçak, M.: Explicit solutions for N-dimensional Schrödinger equation with position-dependent mass. J. Math. Phys. 47, 102101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lozada-Cassou, M., Dong, S.H., Yu, J.: Quantum features of semiconductor quantum dots. Phys. Lett. A 331, 45–52 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Dong, S.H., Lozada-Cassou, M.: Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential. Phys. Lett. A 337, 313–320 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Yu, J., Dong, S.H., Sun, G.H.: Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential. Phys. Lett. A 322, 290–297 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Alhaidari, A.D.: Solutions of the nonrelativistic wave equation with position-dependent effective mass. Phys. Rev. A 66, 042116 (2002)

    Article  ADS  Google Scholar 

  6. Alhaidari, A.D.: Nonrelativistic Green’s function for systems with position-dependent mass. Int. J. Theor. Phys. 42, 2999–3009 (2003)

    Article  MATH  Google Scholar 

  7. Alhaidari, A.D.: Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 72–77 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Chen, G.: Approximate series solutions of the N-dimensional position-dependent mass Schrödinger equation. Phys. Lett. A 329(1–2), 22–27 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Bastard, G.: Wave Mechanics Applied to Semiconductor Heterostructure. Les Editions de Physique, Les Ulis (1988)

    Google Scholar 

  10. Barranco, M., Pi, M., Gatica, S.M., Hernandez, E.S., Navarro, J.: Structure and energetics of mixed 4He-3He drops. Phys. Rev. B 56, 8997–9003 (1997)

    Article  ADS  Google Scholar 

  11. Harrison, P.: Quantum Wells, Wires and Dots. Wiley, New York (2000)

    Google Scholar 

  12. Serra, L., Lipparini, E.: Spin response of unpolarized quantum dots. Europhys. Lett. 40, 667–672 (1997)

    Article  ADS  Google Scholar 

  13. Arias de Saavedra, F., Boronat, J., Polls, A., Fabrocini, A.: Effective mass of one 4He atom in liquid 3He. Phys. Rev. B 50, 4248–4251 (1994)

    Article  ADS  Google Scholar 

  14. Gora, T., Williams, F.: Theory of electronic states and transport in graded mixed semiconductors. Phys. Rev. 177, 1179–1182 (1969)

    Article  ADS  Google Scholar 

  15. Von Roos, O.: Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547–7552 (1983)

    Article  ADS  Google Scholar 

  16. Von Roos, O., Mavromatis, H.: Position-dependent effective masses in semiconductor theory. II. Phys. Rev. B 31, 2294–2298 (1985)

    Article  ADS  Google Scholar 

  17. Morrow, R.A.: Establishment of an effective-mass Hamiltonian for abrupt heterojunctions. Phys. Rev. B 35, 8074–8079 (1987)

    Article  ADS  Google Scholar 

  18. Trzeciakowski, W.: Boundary conditions and interface states in heterostructures. Phys. Rev. B 38, 4322–4325 (1988)

    Article  ADS  Google Scholar 

  19. Galbraith, I., Duggan, G.: Envelope-function matching conditions for GaAs/(Al, Ga)As heterojunctions. Phys. Rev. B 38, 10057–10059 (1988)

    Article  ADS  Google Scholar 

  20. Young, K.: Position-dependent effective mass for inhomogeneous semiconductors. Phys. Rev. B 39, 13434–13441 (1989)

    Article  ADS  Google Scholar 

  21. Einevoll, G.T., Hemmer, P.C., Thomsen, J.: Operator ordering in effective-mass theory for heterostructures. I. Comparison with exact results for superlattices, quantum wells, and localized potentials. Phys. Rev. B 42, 3485–3496 (1990)

    Article  ADS  Google Scholar 

  22. Weisbuch, C., Vinter, B.: Quantum Semiconductor Heterostructures. Academic Press, New York (1993)

    Google Scholar 

  23. Lévy-Leblond, J.M.: Position-dependent effective mass and Galilean invariance. Phys. Rev. A 52, 1845–1849 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gönül, B., Özer, O., Gönül, B., Üzgün, F.: Exact solutions of effective-mass Schrödinger equations. Mod. Phys. Lett. A 17(37), 2453–2465 (2002)

    Article  ADS  MATH  Google Scholar 

  25. Gönül, B., Gönül, B., Tutcu, D., Özer, O.: Supersymmetric approach to exactly solvable systems with position-dependent effective masses. Mod. Phys. Lett. A 17(31), 2057–2066 (2002)

    Article  ADS  MATH  Google Scholar 

  26. Plastino, A.R., Casas, M., Plastino, V.: Bohmian quantum theory of motion for particles with position-dependent effective mass. Phys. Lett. A 281, 297–304 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Yu, J., Dong, S.H.: Exactly solvable potentials for the Schrödinger equation with spatially dependent mass. Phys. Lett. A 325, 194–198 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Pérez-Alvarez, R., Rodriguez-Coppola, H.: Transfer matrix in 1D Schrödinger problems with constant and position-dependent mass. Phys. Status Solidi (b) 145, 493–500 (1988)

    Article  ADS  Google Scholar 

  29. Pérez-Alvarez, R., Parra-Santiago, J.L., Pajón-Suárez, P.: Cylindrical quantum well with position-dependent mass. Phys. Status Solidi (b) 147, 127–133 (1988)

    Article  ADS  Google Scholar 

  30. Milanović, V., Ikonić, Z.: Generation of isospectral combinations of the potential and the effective-mass variations by supersymmetric quantum mechanics. J. Phys. A, Math. Gen. 32, 7001–7015 (1999)

    Article  ADS  MATH  Google Scholar 

  31. Renan, R., Pacheco, M.H., Almeida, C.A.S.: Treating some solid state problems with the Dirac equation. J. Phys. A, Math. Gen. 33, L509–L514 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Milanović, V., Ikonić, Z.: Intraband absorption of infrared radiation in a semiconductor quantum dot. Phys. Rev. B 39, 7982–7984 (1989)

    Article  ADS  Google Scholar 

  33. Koç, R., Koca, M.: A systematic study on the exact solution of the position dependent mass Schrödinger equation. J. Phys. A, Math. Gen. 36, 8105–8112 (2003)

    Article  ADS  MATH  Google Scholar 

  34. Roy, B.: Lie algebraic approach to singular oscillator with a position-dependent mass. Europhys. Lett. 72, 1–6 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. Dong, S.H., Peña, J.J., García-Ravelo, J., Pacheco-García, C.: Algebraic approach to the position-dependent mass Schrödinger equation for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)

    Article  ADS  MATH  Google Scholar 

  36. Schmidt, A.G.M.: Wave-packet revival for the Schrödinger equation with position-dependent mass. Phys. Lett. A 353, 459–462 (2006)

    Article  ADS  Google Scholar 

  37. Chen, G.: Approximate series solutions of the N-dimensional position-dependent mass Schrödinger equation. Phys. Lett. A 329, 22–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Chen, G.: Exact solutions of the position-dependent mass Schrödinger equation in D dimensions. Phys. Lett. A 331, 312–315 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Ballesteros, A., Enciso, A., Herranz, F.J., Ragnisco, O., Riglioni, D.: A new exactly solvable quantum model in N dimensions. Phys. Lett. A 375, 1431–1435 (2011)

    Article  ADS  Google Scholar 

  40. Ikhdair, S.M., Sever, R.: Exact solvable effective mass d-dimensional Schrödinger equation for pseudoharmonic and modified Kratzer problems. Int. J. Mod. Phys. C 20, 361–372 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Schrödinger Equation with Position-Dependent Mass. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_12

Download citation

Publish with us

Policies and ethics