Skip to main content

The Levinson Theorem for Dirac Equation

  • Chapter
Wave Equations in Higher Dimensions
  • 1463 Accesses

Abstract

The Levinson theorem as an important theorem in the quantum scattering theory has been generalized and applied to different fields in modern physics. With the interest of higher-dimensional field theory, the Levinson theorem for the Schrödinger equation in arbitrary D dimensions was studied. The purpose of this Chapter is to establish the Levinson theorem for Dirac equation. We shall first study the generalized Sturm-Liouville theorem, the number of bound states, the Levinson theorem, and then we present the Friedel theorem and comparison theorem due to its close connection with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu, X.Y., Ma, Z.Q., Dong, S.H.: Exact solutions to the Dirac equation for a Coulomb potential in D+1 dimensions. Int. J. Mod. Phys. E 11(4), 335–346 (2002)

    Article  ADS  Google Scholar 

  2. Levinson, N.: On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 25(9), 1–29 (1949)

    MathSciNet  Google Scholar 

  3. Dong, S.H., Ma, Z.Q.: Nonrelativistic Levinson’s theorem in D dimensions. Phys. Rev. A 65, 042717 (2002)

    Article  ADS  Google Scholar 

  4. Dong, S.H., Hou, X.W., Ma, Z.Q.: Relativistic Levinson theorem in two dimensions. Phys. Rev. A 58, 2160–2167 (1998)

    Article  ADS  Google Scholar 

  5. Dong, S.H., Hou, X.W., Ma, Z.Q.: Levinson’s theorem for the Klein-Gordon equation in two dimensions. Phys. Rev. A 59, 995–1002 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dong, S.H., Hou, X.W., Ma, Z.Q.: Levinson’s theorem for non-local interactions in two dimensions. J. Phys. A, Math. Gen. 31, 7501 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Newton, R.G.: Analytic properties of radial wave functions. J. Math. Phys. 1, 319 (1960)

    Article  ADS  Google Scholar 

  8. Newton, R.G.: Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum. J. Math. Phys. 18, 1348 (1977)

    Article  ADS  Google Scholar 

  9. Newton, R.G.: Nonlocal interactions: the generalized Levinson theorem and the structure of the spectrum. J. Math. Phys. 18, 1582 (1977)

    Article  ADS  Google Scholar 

  10. Newton, R.G.: Inverse scattering. I. One dimension. J. Math. Phys. 21, 493 (1982)

    Article  ADS  Google Scholar 

  11. Newton, R.G.: Scattering Theory of Waves and Particles, 2nd edn. Springer, New York (1982)

    MATH  Google Scholar 

  12. Jauch, J.M.: On the relation between scattering phase and bound states. Helv. Phys. Acta 30, 143–156 (1957)

    MATH  MathSciNet  Google Scholar 

  13. Martin, A.: On the validity of Levinson’s theorem for non-local interactions. Nuovo Cimento 7, 607–627 (1968)

    Google Scholar 

  14. Eberly, J.H.: Quantum scattering theory in one dimension. Am. J. Phys. 33, 771 (1965)

    Article  ADS  Google Scholar 

  15. Ni, G.J.: The Levinson theorem and its generalization in relativistic quantum mechanics. Phys. Energ. Fort. Phys. Nucl. 3, 432–449 (1979)

    Google Scholar 

  16. Newton, R.G.: Inverse scattering by a local impurity in a periodic potential in one dimension. J. Math. Phys. 24, 2152 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Newton, R.G.: Remarks on inverse scattering in one dimension. J. Math. Phys. 25, 2991 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Newton, R.G.: Comment on Normalization of scattering states, scattering phase shifts, and Levinson’s theorem. Helv. Phys. Acta 67, 20 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Ma, Z.Q., Ni, G.J.: Levinson theorem for Dirac particles. Phys. Rev. D 31, 1482–1488 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ma, Z.Q.: Levinson’s theorem for Dirac particles moving in a background magnetic monopole field. Phys. Rev. D 32, 2203–2212 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ma, Z.Q.: Levinson’s theorem for Dirac particles with a long-range potential. Phys. Rev. D 32, 2213–2215 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. Liang, Y.G., Ma, Z.Q.: Levinson’s theorem for the Klein-Gordon equation. Phys. Rev. D 34, 565–570 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Iwinski, Z.R., Rosenberg, L., Spruch, L.: Nodal structure of zero-energy wavefunctions: new approach to Levinson’s theorem. Phys. Rev. A 31, 1229–1240 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. Iwinski, Z.R., Rosenberg, L., Spruch, L.: Nodal structure and phase shifts of zero-incident-energy wavefunctions: multiparticle single-channel scattering. Phys. Rev. A 33, 946–953 (1986)

    Article  ADS  Google Scholar 

  25. Bollé, D., Gesztesy, F., Danneels, C., Wilk, S.F.J.: Threshold behavior and Levinson’s theorem for two-dimensional scattering systems: a surprise. Phys. Rev. Lett. 56, 900–903 (1986)

    Article  ADS  Google Scholar 

  26. Gibson, W.G.: Levinson’s theorem and the second virial coefficient in one, two, and three dimensions. Phys. Rev. A 36, 564–575 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. Clemence, D.P.: Low-energy scattering and Levinson’s theorem for a one-dimensional Dirac equation. Inverse Probl. 5, 269 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. van Dijk, W., Kiers, K.A.: Time delay in simple one-dimensional systems. Am. J. Phys. 60, 520 (1992)

    Article  ADS  Google Scholar 

  29. Baton, G.: Levinson’s theorem in one dimension: heuristics. J. Phys. A, Math. Gen. 18, 479 (1985)

    Article  ADS  Google Scholar 

  30. Vidal, F., LeTourneux, J.: Multichannel scattering with nonlocal and confining potentials. I. General theory. Phys. Rev. C 45, 418–429 (1992)

    Article  ADS  Google Scholar 

  31. Sassoli de Bianchi, M.S.: Levinson’s theorem, zero-energy resonances, and time delay in one-dimensional scattering systems. J. Math. Phys. 35, 2719 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Martin, A., Debianchi, M.S.: Levinson’s theorem for time-periodic potentials. Europhys. Lett. 34, 639 (1996)

    Article  ADS  Google Scholar 

  33. Kiers, K.A., van Dijk, W.: Scattering in one dimension: the coupled Schrödinger equation, threshold behaviour and Levinson’s theorem. J. Math. Phys. 37, 6033 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Ma, Z.Q., Dai, A.Y.: Levinson’s theorem for non-local interactions. J. Phys. A, Math. Gen. 21, 2085 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. Aktosun, T., Klaus, M., van der Mee, C.: On the Riemann-Hilbert problem for the one-dimensional Schrödinger equation. J. Math. Phys. 34, 2651 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Aktosun, T., Klaus, M., van der Mee, C.: Factorization of scattering matrices due to partitioning of potentials in one-dimensional Schrödinger-type equations. J. Math. Phys. 37, 5897 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Aktosun, T., Klaus, M., van der Mee, C.: Wave scattering in one dimension with absorption. J. Math. Phys. 39, 1957 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Aktosun, T., Klaus, M., van der Mee, C.: On the number of bound states for the one-dimensional Schrödinger equation. J. Math. Phys. 39, 4249 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Ma, Z.Q.: Comment on “Levinson’s theorem for the Dirac equation”. Phys. Rev. Lett. 76, 3654 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Poliatzky, N.: Poliatzky replies “Comment on ‘Levinson’s theorem for the Dirac equation’ ”. Phys. Rev. Lett. 76, 3655 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. Poliatzky, N.: Levinson’s theorem for the Dirac equation. Phys. Rev. Lett. 70, 2507–2510 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Rosenberg, L., Spruch, L.: Generalized Levinson theorem: applications to electron-atom scattering. Phys. Rev. A 54, 4985–4991 (1996)

    Article  ADS  Google Scholar 

  43. Portnoi, M.E., Galbraith, I.: Variable-phase method and Levinson’s theorem in two dimensions: application to a screened Coulomb potential. Solid State Commun. 103, 325–329 (1997)

    Article  ADS  Google Scholar 

  44. Portnoi, M.E., Galbraith, I.: Levinson’s theorem and scattering phase-shift contributions to the partition function of interacting gases in two dimensions. Phys. Rev. B 58, 3963–3968 (1998)

    Article  ADS  Google Scholar 

  45. Lin, Q.G.: Levinson theorem in two dimensions. Phys. Rev. A 56, 1938–1944 (1997)

    Article  ADS  Google Scholar 

  46. Lin, Q.G.: Levinson theorem for Dirac particles in two dimensions. Phys. Rev. A 57, 3478–3488 (1998)

    Article  ADS  Google Scholar 

  47. Lin, Q.G.: Levinson theorem for Dirac particles in one dimension. Eur. Phys. J. D 7, 515 (1999)

    Article  ADS  Google Scholar 

  48. Ma, Z.Q.: Proof of the Levinson theorem by the Sturm-Liouville theorem. J. Math. Phys. 26(8), 1995 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Dong, S.H., Hou, X.W., Ma, Z.Q.: Levinson’s theorem for the Schrödinger equation in two dimensions. Phys. Rev. A 58, 2790–2796 (1998)

    Article  ADS  Google Scholar 

  50. Dong, S.H., Ma, Z.Q.: Levinson’s theorem for the Schrödinger equation in one dimension. Int. J. Theor. Phys. 39, 469–481 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  51. Dong, S.H.: Levinson’s theorem for the nonlocal interaction in one dimension. Int. J. Theor. Phys. 39, 1529–1541 (2000)

    Article  MATH  Google Scholar 

  52. Dong, S.H.: Levinson’s theorem for the Klein-Gordon equation in one dimension. Eur. Phys. J. D 11, 159–165 (2000)

    ADS  Google Scholar 

  53. Blankenbecler, R., Boyanovsky, D.: Extensions of Levinson’s theorem: application to indices and fractional charge. Physica D 18, 367 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  54. Niemi, A.J., Semenoff, G.W.: Anomalies, Levinson’s theorem, and fermion determinants. Phys. Rev. D 32, 471–475 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  55. Yang, C.N.: In: Craigie, N.S., Goddard, P., Nahm, W. (eds.) Monopoles in Quantum Field Theory. Proceedings of the Monopole Meeting, Trieste, Italy, p. 237. World Scientific, Singapore (1982)

    Google Scholar 

  56. Friedel, J.: XIV. The distribution of electrons round impurities in monovalent metals. Philos. Mag. Ser. 7 43, 153–189 (1952)

    MATH  Google Scholar 

  57. Mahan, G.D.: Many-Particle Physics. Plenum, New York (2000)

    Google Scholar 

  58. Lin, D.H.: Friedel sum rule for relativistic spin-1/2 systems. Phys. Rev. A 72, 012701 (2005)

    Article  ADS  Google Scholar 

  59. Lin, D.H.: Friedel theorem for two-dimensional relativistic spin-1/2 systems. Phys. Rev. A 73, 044701 (2006)

    Article  ADS  Google Scholar 

  60. Lin, D.H.: Friedel theorem for Dirac fermions in D dimensions. Phys. Rev. A 74, 032109 (2006)

    Article  ADS  Google Scholar 

  61. Chen, G.: Relativistic spectral comparison theorem in two dimensions. Phys. Rev. 71, 024102 (2005)

    ADS  MathSciNet  Google Scholar 

  62. Hall, R.L.: Spectral comparison theorem for the Dirac equation. Phys. Rev. Lett. 83, 468–471 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Chen, G.: Spectral comparison theorem for the N-dimensional Dirac equation. Phys. Rev. 72, 044102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  64. Hall, R.L.: Special comparison theorem for the Dirac equation. Phys. Rev. Lett. 101, 090401 (2008)

    Article  ADS  Google Scholar 

  65. Hall, R.L.: Relativistic comparison theorems. Phys. Rev. A 81, 052101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). The Levinson Theorem for Dirac Equation. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_15

Download citation

Publish with us

Policies and ethics