Skip to main content

Abstract

Since the exactly solvable higher-dimensional quantum systems with certain central potentials are usually related to the real orthogonal group O(N) defined by orthogonal n×n matrices, we shall give a brief review of some basic properties of group O(N) based on the monographs and textbooks. We first outline the development in order to make the reader recognize its importance in physics and then review the tensor and spinor representations of the group SO(N) and Γ matrix group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exist two kinds of different meanings of the terminology “abstract group” during the first half of the 20th century. The first meaning was that of a group defined by four axioms given above, but the second one was that of a group defined by generators and commutation relations.

  2. 2.

    A Young pattern [λ] has n boxes lined up on the top and on the left, where the jth row contains λ j boxes. For instance, the Young pattern [2,1] is

    It should be noted that the number of boxes in the upper row is not less than in the lower row, and the number of boxes in the left column is not less than that in the right column. We suggest the reader refer to the permutation group S n in Appendix A for more information.

  3. 3.

    B N is the strong space-time reflection matrix and C N is the charge conjugation matrix, which are usually used in particle physics.

References

  1. Joseph, A.: Self-adjoint ladder operators (I). Rev. Mod. Phys. 39, 829–837 (1967)

    Article  ADS  MATH  Google Scholar 

  2. Coulson, C.A., Joseph, A.: Self-adjoint ladder operators. II. Rev. Mod. Phys. 39, 838–849 (1967)

    Article  ADS  MATH  Google Scholar 

  3. Joseph, A.: Self-adjoint ladder operators. III. Rev. Mod. Phys. 40, 845–871 (1968)

    Article  ADS  Google Scholar 

  4. Weyl, H.: The Theory of Groups and Quantum Mechanics, 2nd (English) edn. Dutton, New York (1931)

    MATH  Google Scholar 

  5. Wybourne, B.G.: Classical Groups for Physicists. Wiley, New York (1974)

    MATH  Google Scholar 

  6. Hamermesh, M.: Group Theory and Its Applications to Physical Problems. Addison-Wesley, New York (1964)

    Google Scholar 

  7. Ma, Z.Q.: Group Theory in Physics. World Scientific, Singapore (1998) (in Chinese)

    Google Scholar 

  8. Ma, Z.Q.: Group Theory for Physicists. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  9. Racah, G.: Theory of complex spectra. I. Phys. Rev. 61, 186–197 (1942)

    Article  ADS  Google Scholar 

  10. Racah, G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)

    Article  ADS  Google Scholar 

  11. Racah, G.: Theory of complex spectra. III. Phys. Rev. 63, 367–382 (1943)

    Article  ADS  Google Scholar 

  12. Wigner, E.P.: Group Theory and Its Application to Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    MATH  Google Scholar 

  13. Pauli, W.: On the hydrogen spectrum from the standpoint of the new quantum mechanics. Z. Phys. 36, 336–363 (1926)

    ADS  Google Scholar 

  14. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. (Leipz.) 80, 437–490 (1926)

    Article  Google Scholar 

  15. Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. Benjamin, New York (1964)

    Google Scholar 

  16. Kibler, M.R.: A group-theoretical approach to the periodic table of chemical elements: old and new developments. In: Rouvray, D.H., King, R.B. (eds.) The Mathematics of the Periodic Table. Nova Science Publishers, New York (2005). arXiv:quant-ph/0503039

    Google Scholar 

  17. Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4053 (1986)

    Article  ADS  Google Scholar 

  18. Brif, C., Vourdas, A., Mann, A.: Analytic representations based on SU(1,1) coherent states and their applications. J. Phys. A, Math. Gen. 29, 5873 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Wodkiewicz, K., Eberly, J.H.: Coherent states, squeezed fluctuations, and the SU(2) and SU(1,1) groups in quantum-optics applications. J. Opt. Soc. Am. B 2, 458–466 (1985)

    Article  ADS  Google Scholar 

  20. Lai, W.K., Buzek, V., Knight, P.L.: Nonclassical fields in a linear directional coupler. Phys. Rev. A 43, 6323–6336 (1991)

    Article  ADS  Google Scholar 

  21. Leonhardt, U.: Quantum statistics of a lossless beam splitter: SU(2) symmetry in phase space. Phys. Rev. A 48, 3265–3277 (1993)

    Article  ADS  Google Scholar 

  22. Gilmore, R.: Lie Groups, Lie Algebras, and Some of Their Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  23. Moshinsky, M.: Group Theory and the Many-Body Problem. Gordon & Breach, New York (1968)

    Google Scholar 

  24. Barut, A.O., Böhm, A.: Dynamical groups and mass formula. Phys. Rev. 139, B1107–B1112 (1965)

    Article  ADS  Google Scholar 

  25. Paldus, J.: Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems. J. Chem. Phys. 61, 5321–5330 (1974)

    Article  ADS  Google Scholar 

  26. Paldus, J.: In: Eyring, H., Henderson, D. (eds.) Theoretical Chemistry: Advances and Perspectives, vol. 2, p. 131. Academic Press, New York (1976)

    Google Scholar 

  27. Frank, A., Van Isacker, P.: Algebraic Methods in Molecular and Nuclear Structure Physics. Wiley, New York (1994)

    MATH  Google Scholar 

  28. Iachello, F., Levine, R.D.: Algebraic Theory of Molecules. Oxford University Press, Oxford (1995)

    Google Scholar 

  29. Fernández, F., Castro, A.: Algebraic Methods in Quantum Chemistry and Physics. Mathematical Chemistry Series. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  30. Johnston, D.F.: Group theory in solid state physics. Rep. Prog. Phys. 23, 66–153 (1960)

    Article  ADS  Google Scholar 

  31. Klauder, J.R., Sudarshan, E.C.G.: Fundamentals of Quantum Optics. Benjamin, New York (1968)

    Google Scholar 

  32. Traux, D.R.: Baker-Campbell-Hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators. Phys. Rev. D 31, 1988–1991 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  33. Barut, A.O., Phillips, E.C.: Matrix elements of representations of non-compact groups in a continuous basis. Commun. Math. Phys. 8, 52–65 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Perelomov, A.M.: Some remarks on boson pair creation in alternating external field. Phys. Lett. A 39, 165–166 (1972)

    Article  ADS  Google Scholar 

  35. Prakash, G.S., Agarwal, G.S.: Mixed excitation- and deexcitation-operator coherent states for the SU(1,1) group. Phys. Rev. A 50, 4258–4263 (1994)

    Article  ADS  Google Scholar 

  36. Gerry, C.C.: Remarks on the use of group theory in quantum optics. Opt. Express 8, 76–85 (2001)

    Article  ADS  Google Scholar 

  37. Miller Jr., W.: Symmetry Groups and Their Applications. Academic Press, New York/San Francisco/London (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Special Orthogonal Group SO(N). In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_2

Download citation

Publish with us

Policies and ethics