Skip to main content

Abstract

The exact solutions of wave equations are possible only for a few potentials. We have to use some approximation methods to obtain their solutions. Until now, many efforts have been made to solve the stationary Schrödinger equation with the anharmonic potentials containing negative powers of the radial coordinate. Interest in them stems from the fact that the study of the Schrödinger equation with these potentials provides us for insight into the physical problem. However, most of those works have been mainly carried out in the lower-dimensional space. The purpose of this Chapter is, by applying a suitable ansatz to the wavefunction, to analyze the D-dimensional radial Schrödinger equation with anharmonic potentials such as the sextic potential V(r)=ar 6+br 4+cr 2, the singular integer power potentials V(r)=ar 2+br −2+cr −4+dr −6, the singular fraction power potentials V(r)=ar −1/2+br −3/2 and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, S.K., Gupta, N.: Exact solution of nonrelativistic Schrödinger equation for certain central physical potentials. Nuovo Cimento B 114, 299–328 (1998)

    ADS  MathSciNet  Google Scholar 

  2. Khare, A., Behra, S.N.: Anharmonic oscillator model for first order structural phase transition. Pramana J. Phys. 14, 327–341 (1980)

    Article  ADS  Google Scholar 

  3. Emin, D.: Small polarons. Phys. Today 35, 34 (1982)

    Article  Google Scholar 

  4. Emin, D., Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323–326 (1976)

    Article  ADS  Google Scholar 

  5. Coleman, S.: “Aspects of Symmetry” Selected Erice Lectures, p. 234. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  6. Kaushal, R.S.: Quantum mechanics of noncentral harmonic and anharmonic potentials in two-dimensions. Ann. Phys. (N.Y.) 206, 90–105 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Kaushal, R.S.: An exact solution of the Schrödinger wave equation for a sextic potential. Phys. Lett. A 142, 57–58 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kaushal, R.S., Parashar, D.: On the quantum bound states for the potential V(r)=ar 2+br −4+cr −6. Phys. Lett. A 170, 335–338 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Özcelik, S., Simsek, M.: Exact solutions of the radial Schrödinger equation for inverse-power potentials. Phys. Lett. A 152, 145–150 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dong, S.H., Ma, Z.Q.: Exact solutions to the Schrödinger equation for the potential V(r)=ar 2+br −4+cr −6 in two dimensions. J. Phys. A, Math. Gen. 31, 9855 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Dong, S.H., Ma, Z.Q., Esposito, G.: Exact solutions of the Schrödinger equation with inverse-power potential. Found. Phys. Lett. 12, 465–474 (1999)

    Article  MathSciNet  Google Scholar 

  12. Dong, S.H.: Exact solutions of the two-dimensional Schrödinger equation with certain central potentials. Int. J. Theor. Phys. 39, 1119–1128 (2000)

    Article  MATH  Google Scholar 

  13. Dong, S.H.: A new approach to the relativistic Schrödinger equation with central potential: ansatz method. Int. J. Theor. Phys. 40, 559–567 (2001)

    Article  MATH  Google Scholar 

  14. Child, M.S., Dong, S.H., Wang, X.G.: Quantum states of a sextic potential: hidden symmetry and quantum monodromy. J. Phys. A, Math. Gen. 33(32), 5653 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Znojil, M.: Singular anharmonicities and the analytic continued fractions. J. Math. Phys. 30, 23 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Znojil, M.: Singular anharmonicities and the analytic continued fractions. II. The potentials V(r)=ar 2+br −4+cr −6. J. Math. Phys. 31, 108 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Voros, A.: Exact resolution method for general 1D polynomial Schrödinger equation. J. Phys. A, Math. Gen. 32, 5993 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Esposito, G.: Scattering from singular potentials in quantum mechanics. J. Phys. A, Math. Gen. 31, 9493 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Esposito, G.: Complex parameters in quantum mechanics. Found. Phys. Lett. 11, 535–547 (1998)

    Article  MathSciNet  Google Scholar 

  20. Barut, A.O.: Magnetic resonances between massive and massless spin-1/2 particles with magnetic moments. J. Math. Phys. 21, 568 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  21. Song, X.: An effective quark-antiquark potential for both heavy and light mesons. J. Phys. G, Nucl. Part. Phys. 17, 49 (1980)

    Article  ADS  Google Scholar 

  22. Dong, S.H.: The ansatz method for analyzing Schrödinger’s equation with three anharmonic potentials in D dimensions. Found. Phys. Lett. 15, 385–395 (2002)

    Article  MathSciNet  Google Scholar 

  23. Dong, S.H.: On the solutions of the Schrödinger equation with some anharmonic potentials: wave function ansatz. Phys. Scr. 65, 289–295 (2002)

    Article  ADS  MATH  Google Scholar 

  24. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  ADS  Google Scholar 

  25. Rouse, C.A.: Series solution of the Schrödinger equation with the Morse potential. Phys. Rev. A 36, 1–4 (1987)

    Article  ADS  Google Scholar 

  26. Dong, S.H., Sun, G.H.: The series solutions of the non-relativistic equation with the Morse potential. Phys. Lett. A 314, 261–266 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Wavefunction Ansatz Method. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_8

Download citation

Publish with us

Policies and ethics