Skip to main content

The Levinson Theorem for Schrödinger Equation

  • Chapter
Wave Equations in Higher Dimensions
  • 1472 Accesses

Abstract

The Levinson theorem as an important theorem in quantum scattering theory establishes the relation between the total number n l of bound states and the phase shift δ l (0) of the scattering states at zero momentum. In this Chapter, we are ready to study the scattering states and bound states of the Schrödinger equation with central potential, the Sturm-Liouville theorem, the establishment of the non-relativistic Levinson theorem, the discussions on the general case. Finally, we shall outline the comparison theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  2. Levinson, N.: On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 25(9), 1–29 (1949)

    MathSciNet  Google Scholar 

  3. Dong, S.H., Hou, X.W., Ma, Z.Q.: Relativistic Levinson theorem in two dimensions. Phys. Rev. A 58, 2160–2167 (1998)

    Article  ADS  Google Scholar 

  4. Dong, S.H., Hou, X.W., Ma, Z.Q.: Levinson’s theorem for the Klein-Gordon equation in two dimensions. Phys. Rev. A 59, 995–1002 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dong, S.H., Hou, X.W., Ma, Z.Q.: Levinson’s theorem for non-local interactions in two dimensions. J. Phys. A, Math. Gen. 31, 7501 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Newton, R.G.: Analytic properties of radial wave functions. J. Math. Phys. 1, 319 (1960)

    Article  ADS  Google Scholar 

  7. Newton, R.G.: Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum. J. Math. Phys. 18, 1348 (1977)

    Article  ADS  Google Scholar 

  8. Newton, R.G.: Nonlocal interactions: the generalized Levinson theorem and the structure of the spectrum. J. Math. Phys. 18, 1582 (1977)

    Article  ADS  Google Scholar 

  9. Newton, R.G.: Inverse scattering. I. One dimension. J. Math. Phys. 21, 493 (1982)

    Article  ADS  Google Scholar 

  10. Newton, R.G.: Scattering Theory of Waves and Particles, 2nd edn. Springer, New York (1982)

    MATH  Google Scholar 

  11. Jauch, J.M.: On the relation between scattering phase and bound states. Helv. Phys. Acta 30, 143–156 (1957)

    MATH  MathSciNet  Google Scholar 

  12. Martin, A.: On the validity of Levinson’s theorem for non-local interactions. Nuovo Cimento 7, 607–627 (1968)

    Google Scholar 

  13. Eberly, J.H.: Quantum scattering theory in one dimension. Am. J. Phys. 33, 771 (1965)

    Article  ADS  Google Scholar 

  14. Ni, G.J.: The Levinson theorem and its generalization in relativistic quantum mechanics. Phys. Energ. Fort. Phys. Nucl. 3, 432–449 (1979)

    Google Scholar 

  15. Newton, R.G.: Inverse scattering by a local impurity in a periodic potential in one dimension. J. Math. Phys. 24, 2152 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Newton, R.G.: Remarks on inverse scattering in one dimension. J. Math. Phys. 25, 2991 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Newton, R.G.: Comment on Normalization of scattering states, scattering phase shifts, and Levinson’s theorem. Helv. Phys. Acta 67, 20 (1994)

    MATH  MathSciNet  Google Scholar 

  18. Ma, Z.Q., Ni, G.J.: Levinson theorem for Dirac particles. Phys. Rev. D 31, 1482–1488 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ma, Z.Q.: Levinson’s theorem for Dirac particles moving in a background magnetic monopole field. Phys. Rev. D 32, 2203–2212 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ma, Z.Q.: Levinson’s theorem for Dirac particles with a long-range potential. Phys. Rev. D 32, 2213–2215 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liang, Y.G., Ma, Z.Q.: Levinson’s theorem for the Klein-Gordon equation. Phys. Rev. D 34, 565–570 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  22. Iwinski, Z.R., Rosenberg, L., Spruch, L.: Nodal structure of zero-energy wavefunctions: new approach to Levinson’s theorem. Phys. Rev. A 31, 1229–1240 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Iwinski, Z.R., Rosenberg, L., Spruch, L.: Nodal structure and phase shifts of zero-incident-energy wavefunctions: multiparticle single-channel scattering. Phys. Rev. A 33, 946–953 (1986)

    Article  ADS  Google Scholar 

  24. Bollé, D., Gesztesy, F., Danneels, C., Wilk, S.F.J.: Threshold behavior and Levinson’s theorem for two-dimensional scattering systems: a surprise. Phys. Rev. Lett. 56, 900–903 (1986)

    Article  ADS  Google Scholar 

  25. Gibson, W.G.: Levinson’s theorem and the second virial coefficient in one, two, and three dimensions. Phys. Rev. A 36, 564–575 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. Clemence, D.P.: Low-energy scattering and Levinson’s theorem for a one-dimensional Dirac equation. Inverse Probl. 5, 269 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. van Dijk, W., Kiers, K.A.: Time delay in simple one-dimensional systems. Am. J. Phys. 60, 520 (1992)

    Article  ADS  Google Scholar 

  28. Baton, G.: Levinson’s theorem in one dimension: heuristics. J. Phys. A, Math. Gen. 18, 479 (1985)

    Article  ADS  Google Scholar 

  29. Vidal, F., LeTourneux, J.: Multichannel scattering with nonlocal and confining potentials. I. General theory. Phys. Rev. C 45, 418–429 (1992)

    Article  ADS  Google Scholar 

  30. Sassoli de Bianchi, M.S.: Levinson’s theorem, zero-energy resonances, and time delay in one-dimensional scattering systems. J. Math. Phys. 35, 2719 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Martin, A., Debianchi, M.S.: Levinson’s theorem for time-periodic potentials. Europhys. Lett. 34, 639 (1996)

    Article  ADS  Google Scholar 

  32. Kiers, K.A., van Dijk, W.: Scattering in one dimension: the coupled Schrödinger equation, threshold behaviour and Levinson’s theorem. J. Math. Phys. 37, 6033 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Ma, Z.Q., Dai, A.Y.: Levinson’s theorem for non-local interactions. J. Phys. A, Math. Gen. 21, 2085 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. Aktosun, T., Klaus, M., van der Mee, C.: On the Riemann-Hilbert problem for the one-dimensional Schrödinger equation. J. Math. Phys. 34, 2651 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Aktosun, T., Klaus, M., van der Mee, C.: Factorization of scattering matrices due to partitioning of potentials in one-dimensional Schrödinger-type equations. J. Math. Phys. 37, 5897 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Aktosun, T., Klaus, M., van der Mee, C.: Wave scattering in one dimension with absorption. J. Math. Phys. 39, 1957 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Aktosun, T., Klaus, M., van der Mee, C.: On the number of bound states for the one-dimensional Schrödinger equation. J. Math. Phys. 39, 4249 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Ma, Z.Q.: Comment on “Levinson’s theorem for the Dirac equation”. Phys. Rev. Lett. 76, 3654 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Poliatzky, N.: Poliatzky replies “Comment on ‘Levinson’s theorem for the Dirac equation’ ”. Phys. Rev. Lett. 76, 3655 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. Poliatzky, N.: Levinson’s theorem for the Dirac equation. Phys. Rev. Lett. 70, 2507–2510 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Rosenberg, L., Spruch, L.: Generalized Levinson theorem: applications to electron-atom scattering. Phys. Rev. A 54, 4985–4991 (1996)

    Article  ADS  Google Scholar 

  42. Portnoi, M.E., Galbraith, I.: Variable-phase method and Levinson’s theorem in two dimensions: application to a screened Coulomb potential. Solid State Commun. 103, 325–329 (1997)

    Article  ADS  Google Scholar 

  43. Portnoi, M.E., Galbraith, I.: Levinson’s theorem and scattering phase-shift contributions to the partition function of interacting gases in two dimensions. Phys. Rev. B 58, 3963–3968 (1998)

    Article  ADS  Google Scholar 

  44. Lin, Q.G.: Levinson theorem in two dimensions. Phys. Rev. A 56, 1938–1944 (1997)

    Article  ADS  Google Scholar 

  45. Lin, Q.G.: Levinson theorem for Dirac particles in two dimensions. Phys. Rev. A 57, 3478–3488 (1998)

    Article  ADS  Google Scholar 

  46. Lin, Q.G.: Levinson theorem for Dirac particles in one dimension. Eur. Phys. J. D 7, 515 (1999)

    Article  ADS  Google Scholar 

  47. Ma, Z.Q.: Proof of the Levinson theorem by the Sturm-Liouville theorem. J. Math. Phys. 26(8), 1995 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Dong, S.H., Hou, X.W., Ma, Z.Q.: Levinson’s theorem for the Schrödinger equation in two dimensions. Phys. Rev. A 58, 2790–2796 (1998)

    Article  ADS  Google Scholar 

  49. Dong, S.H., Ma, Z.Q.: Levinson’s theorem for the Schrödinger equation in one dimension. Int. J. Theor. Phys. 39, 469–481 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  50. Dong, S.H.: Levinson’s theorem for the nonlocal interaction in one dimension. Int. J. Theor. Phys. 39, 1529–1541 (2000)

    Article  MATH  Google Scholar 

  51. Dong, S.H.: Levinson’s theorem for the Klein-Gordon equation in one dimension. Eur. Phys. J. D 11, 159–165 (2000)

    ADS  Google Scholar 

  52. Blankenbecler, R., Boyanovsky, D.: Extensions of Levinson’s theorem: application to indices and fractional charge. Physica D 18, 367 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  53. Niemi, A.J., Semenoff, G.W.: Anomalies, Levinson’s theorem, and fermion determinants. Phys. Rev. D 32, 471–475 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  54. Yang, C.N.: In: Craigie, N.S., Goddard, P., Nahm, W. (eds.) Monopoles in Quantum Field Theory. Proceedings of the Monopole Meeting, Trieste, Italy, p. 237. World Scientific, Singapore (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). The Levinson Theorem for Schrödinger Equation. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_9

Download citation

Publish with us

Policies and ethics