Skip to main content

Biological Fundamentals for the Biotechnology of Lignocellulose

  • Chapter
  • First Online:
Biotechnology of Lignocellulose

Abstract

Lignocellulose is mainly composed of cellulose, hemicelluloses, and lignin. Microorganisms (fungi, bacteria, and actinomycetes) and animals can be used to degrade lignocellulose. However, the degradability and degrading mechanisms differ for the two groups. Clarifying the biological fundamentals for the biotechnology of lignocellulosic materials is the groundwork for the bioutilization of lignocellulose. This chapter introduces microbes for the degradation of natural lignocellulose; the animals capable of decomposing natural lignocellulose; the properties, hydrolysis mechanism, and application of cellulase; hemicellulose biotransformation; lignin biotransformation; microbial degradation of lignocellulose; and the ecological fundamentals of cellulose biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Si ZS, Jiang C. The degradation of cellulose by rumen microbial and its application. J Microbiol. 2004;23:61–4.

    Google Scholar 

  2. Chen QJ, Liu HS. Cellulose degradation mechanism of rumen microbes. J Microbiol. 2002;22:44–6.

    Google Scholar 

  3. Chen HZ, Li ZH. Lignocellulosical microorganisms and biomass total utilization. Biotechnol Inf. 2002;2:25–9.

    Google Scholar 

  4. Huang YZ. Wood microorganism and its application. Beijing: China Forestry Press; 1985.

    Google Scholar 

  5. Gao PJ, Xu P. Resources and environmental microbial technology. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  6. Lin SP, Xu H. Rudimental study of high-temperature anaerobic cellulolytic bacterium and enzyme. J Sichuan Univ (Nat Sci Ed). 2001;38:134–6.

    Google Scholar 

  7. Syutsubo K, Nagaya Y, Sakai S, Miya A. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci Technol. 2005;52:79–84.

    Google Scholar 

  8. Wang C, Liu GD. Progress of studies on cellulose degradation by rumen microorganism. J Anhui Agric Sci. 2007;35:3771–2.

    Google Scholar 

  9. Song B, Yang J. Screening of a cellulose-decomposing actinomyces strain and its enzyme-producing conditions. J Microbiol. 2006;25:36–9.

    Google Scholar 

  10. Wu X, Chen Q, Gan BC. Classification of a cellulose-degradable actinomyces strain. J Microbiol. 2009;3:64–6.

    Google Scholar 

  11. Chen LL. Study on the screening of cellulolytic strains and degradation characteristics of cellulose [dissertation]. Changchun: Changchun University of Science and Technology; 2008.

    Google Scholar 

  12. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355–83.

    Google Scholar 

  13. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.

    Google Scholar 

  14. Chi YY. Wood decay and its related strains. Beijing: Science Press; 2003.

    Google Scholar 

  15. Li HR. The biology and biotechnology of white rot fungi. Beijing: Chemical Industry Press; 2005.

    Google Scholar 

  16. Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL. High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry. 2005;44:6463–70.

    Google Scholar 

  17. Martínez AT. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microbial Technol. 2002;30:425–44.

    Google Scholar 

  18. Li YH, Zhao FK. Advances in cellulase research. Chin Bull Life Sci. 2005;17:392–7.

    Google Scholar 

  19. Wang J, Ding M, Li YH, Chen QX, Xu GJ M, Zhao FK. Isolation of a multi-functional endogenous cellulase gene from mollusc, Ampullaria crossean. Acta Biochim Biophys Sin. 2003;35:941–6.

    Google Scholar 

  20. Wang J, Ding M, Li YH, Chen QX, Xu GJ, Zhao FK. A monovalent anion affected multi-functional cellulase EGX from the mollusca, Ampullaria crossean. Protein Express Purif. 2003;31:108–14.

    Google Scholar 

  21. He YL, Chen AX. Environmental microbiology. Beijing: China Light Industry Press; 2001.

    Google Scholar 

  22. Chen QX. Purification and characterization of cellulase from Glyptotermes [dissertation]. Xiamen: Xiamen University; 2008.

    Google Scholar 

  23. Yang JX. Cellulase Cx from earthworm (Pheretima asiatica). J Shanxi Norm Univ (Nat Sci Ed). 1998;26:78–80.

    Google Scholar 

  24. Zhuang ZL, Zhou XW. Studies on exploitation and application of cellulase from Ampullarium crossean. J Oceanog Taiwan Strait. 2000;19:6–10.

    Google Scholar 

  25. Zhang Z, Zhao H, Zhou XW, Chen LF, Chen TS, Chen QX. Preliminary studies on isolation, purification and some properties of β-glucosidase from Ampullarium crossean. J Xiamen Univ (Nat Sci). 1999;38:287–91.

    Google Scholar 

  26. Zhao Y, Ding M, Gao RL, Xu GJ, Zhao FK. Study the function and structure of a multi-functional cellulase from a mollusca, Ampullaria Crossean. J Zhejiang Sci Technol Univ. 2008;25:535–8.

    Google Scholar 

  27. Li X, Wu ZM. Application of cellucase in finishing of cotton fabric. Tianjin Text Sci Technol. 2003;41:8–12.

    Google Scholar 

  28. Bok JD, Yernool DA, Eveleigh DE. Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol. 1998;64:4774–81.

    Google Scholar 

  29. Fang J, Gao PJ. Study on the role of cellobiose dehydrogenase in cellulose degradation. Microbiology. 2000;27:15–8.

    Google Scholar 

  30. Chen YQ, Mao PH, Jin X, Zeng XX. Study on the cellulase and its molecular biology. Chem Biol Process. 2004;21:1–3.

    Google Scholar 

  31. Yan BX, Qi F. Progress in structure function studies of cellulases. Prog Biochem Biophys. 1999;26:233–7.

    Google Scholar 

  32. Yan Y, Zhang QF. Cellulose property, application and its environmental protection meaning. Agric Environ Dev. 1997;14:17–20.

    Google Scholar 

  33. Liu XJ. Studies on cellulase production by Trichoderma koningii and its application to rice straw utilization [dissertation]. Zhejiang: Zhejiang University; 2003.

    Google Scholar 

  34. Duan XY, Xin W, Zhang WC. The role of cellobiose in cellulose biological degradation. Microbiology. 2003;30:94–8.

    Google Scholar 

  35. Ai YC, Gao PJ. Basis of specificity of induction and repression by cellobiose on cellulase biosynthesis in fungi. Acta Sci Nat Univ Sun Yatsen. 2000;39:73–7.

    Google Scholar 

  36. Xia LM, Yu SY. Inductive effects of starch hydrolysate on cellulase production. Chem Ind For Prod. 1993;13:137–41.

    Google Scholar 

  37. Sun LY, Zeng YM, Lei C, Chen P. Study on characteristic of the cellulase from Pleurotus eryngii accelerated by hydrolytic cellulose. Food Mach. 2007;23:14–6.

    Google Scholar 

  38. Han F, Sun CY. Induction and repression of cellulases production from Trichoderma pseudokoningii UV III. Ind Microbiol. 2003;33:23–6.

    Google Scholar 

  39. Zhao Y, Wu B, Yan BX, Gao PJ. Mechanism analysis of cellobiose inhibition effect on exo-glucanase. Sci China Ser C. 2003;33:454–60.

    Google Scholar 

  40. Sun XY. Studies on the synthesis regulation of lignocellulose-degrading enzymes in Penicillium decumbens [dissertation]. Shandong: Shandong University; 2007.

    Google Scholar 

  41. Yu XL, Wang L, Xu WM. Progress in the studies of cellulose degradation by cellulase. J Ningbo Univ (Nat Sci Ed). 2007;20:78–82.

    Google Scholar 

  42. Gow LA, Wood TM. Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiol Lett. 1988;50:247–52.

    Google Scholar 

  43. Chen HZ, Li ZH. Comprehensive utilization technology of straw and ecological industry. Fine Spec Chem. 2000;8:8–11.

    Google Scholar 

  44. Woodward J. Synergism in cellulase systems. Bioresour Technol. 1991;36:67–75.

    Google Scholar 

  45. Riedel K, Ritter J, Bronnenmeier K. Synergistic interaction of the Clostridium stercorarium cellulases Avicelase I (CelZ) and Avicelase II (CelY) in the degradation of microcrystalline cellulose. FEMS Microbiol Lett. 1997;147:239–43.

    Google Scholar 

  46. Liu SL, Wang H, Wang CY, Sheng ZW. Progress of the molecular structure and mechanism about cellulase. Food Sci Technol. 2007;32:12–5.

    Google Scholar 

  47. Yu DW, Yuan S. Hydrogen-bond state analysis of cellobiohydrolaseII molecule from Trichoderma viride. Spectrosc Spect Anal. 2005;25:544–7.

    Google Scholar 

  48. Gao PJ. Research advances of cellulase hydrolysis mechanism and its molecular structure and function. Adv Nat Sci. 2003;13:21–9.

    Google Scholar 

  49. Nong X, Wu H, Qin TY, Xiang HY. Study progress of cellulase. J Southwest Univ Natl (Nat Sci Ed). 2005;29:29–33.

    Google Scholar 

  50. Percival ZYH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006;24:452–81.

    Google Scholar 

  51. Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69:124–54.

    Google Scholar 

  52. Leathem GF, Himmel ME. Enzymes in biomass conversion. Washington: ACS; 1991.

    Google Scholar 

  53. Nidetzky B, Steiner W, Claeyssens M. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem J. 1994;303:817–20.

    Google Scholar 

  54. Tomme P, Gilkes NR, Miller Jr RC, Warren AJ, Kilburn DG. An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng Des Sel. 1994;7:117–23.

    Google Scholar 

  55. Lee SB, Shin HS, Ryu DDY, Mandels M. Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng. 2004;24:2137–53.

    Google Scholar 

  56. Ryu DDY, Lee SB. Enzymatic hydrolysis of cellulose: determination of kinetic parameters. Chem Eng Commun. 1986;45:119–34.

    Google Scholar 

  57. Sutcliffe R, Saddler JN. The role of lignin in the adsorption of cellulases during enzymatic treatment of lignocellulosic material. Biotechnol Bioeng. 1986;17:749–62.

    Google Scholar 

  58. Berlin A, Balakshin M, Gilkes N, John K, Vera M, Satoshi K, Jack S. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol. 2006;125:198–209.

    Google Scholar 

  59. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem. 2002;269:4202–11.

    Google Scholar 

  60. Yao Q. Cloning, expression and functional characterization of cellulose fibre swelling factor gene from Trichoderma and the Thermophilic Endoglucanase CelA [dissertation]. Shandong: Shandong University; 2007.

    Google Scholar 

  61. Yao Q, Sun T, Chen G, Liu W. Heterologous expression and site-directed mutagenesis of endoglucanase CelA from Clostridium thermocellum. Biotechnol Lett. 2007;29:1243–7.

    Google Scholar 

  62. Yang W, Liu J, Wang W, Zhang Y, Gao P. Function of a low molecular peptide generated by cellulolytic fungi for the degradation of native cellulose. Biotechnol Lett. 2004;26:1799–802.

    Google Scholar 

  63. Yan BX, Gao PJ. Progress in structure-function studies of cellulases. Chin Bull Life Sci. 1995;7:22–5.

    Google Scholar 

  64. Qiu WH. Solid-state fermentation and properties of laccase [dissertation]. Chinese Academy of Sciences; 2008.

    Google Scholar 

  65. Tanaka M, Ikesaka M, Matsuno R, Converse AO. Effect of pore size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases. Biotechnol Bioeng. 2004;32:698–706.

    Google Scholar 

  66. Fan LT, Lee YH, Beardmore DH. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng. 2004;22:177–99.

    Google Scholar 

  67. Holtzapple M, Cognata M, Shu Y, Hendrickson C. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng. 2004;36:275–87.

    Google Scholar 

  68. Sinitsyn AP, Gusakov AV, Vlasenko EY. Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol. 1991;30:43–59.

    Google Scholar 

  69. Gharpuray MM, Lee YH, Fan LT. Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng. 1983;25:157–72.

    Google Scholar 

  70. Tang AM, Liang WZ. The development of cellulose pretreatment techniques. Chem Ind For Prod. 1999;19:81–8.

    Google Scholar 

  71. Cheung SW, Anderson BC. Laboratory investigation of ethanol production from municipal primary wastewater solids. Bioresour Technol. 1997;59:81–96.

    Google Scholar 

  72. Huang X, Penner MH. Apparent substrate inhibition of the Trichoderma reesei cellulase system. J Agric Food Chem. 1991;39:2096–100.

    Google Scholar 

  73. Penner MH, Liaw ET. Kinetic consequences of high ratios of substrate to enzyme saccharification systems based on Trichoderma cellulase. In: Himmel ME, Baker JO, Overend RP, editors. Enzymatic conversion of biomass for fuels production. Washington: ACS; 1994.

    Google Scholar 

  74. Zhang JN, Yan K. Study on effects of lignin on cellulose enzymolysis and cellulose enzymolysis. Chem Eng. 2000;28:38–9.

    Google Scholar 

  75. Chen HZ, Xu J. Method of absorbing cellulose from hydrolyzed straw with cellulase. China Patent 200610011216.3. 2006.

    Google Scholar 

  76. Reese ET. Elution of cellulase from cellulose. Process Biochem. 1982;17:2–6.

    Google Scholar 

  77. Otter DE, Munro PA, Scott GK, Geddes R. Elution of Trichoderma reesei cellulase from cellulose by pH adjustment with sodium hydroxide. Biotechnol Lett. 1984;6:369–74.

    Google Scholar 

  78. Sinitsyn AP, Bungay HR, Clesceri LS. Enzyme management in the biotech process. Biotechnol Bioeng. 1983;25:1393–9.

    Google Scholar 

  79. Gusakov AV, Sinitsyn AP, Klyosov AA. Kinetics of the enzymatic hydrolysis of cellulose: 1. A mathematical model for a batch reactor process. Enzyme Microb Technol. 1985;7:346–52.

    Google Scholar 

  80. South CR, Hogsett DAL, Lynd LR. Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors. Enzyme Microb Technol. 1995;17:797–803.

    Google Scholar 

  81. Yang S, Ding WY, Chen HZ. Enzymatic hydrolysis of rice straw in a tubular reactor coupled with UF membrane. Process Biochem. 2006;41:721–5.

    Google Scholar 

  82. Chen HL, Huang F, Yang GH, Chen JC. Progress in wood and non-wood hemicellulose research. Chem Ind For Prod. 2008;28:119–26.

    Google Scholar 

  83. Sun X, Wang YL, Deng ZX. Research of hemicellulose bioconversion. J Microb. 1997;17:50–5.

    Google Scholar 

  84. Wan HG, Wang T, Cai H, Jia W, Zheng WG. Research advances on characteristics and application of xylanases. Food Ferment Ind. 2008;34:92–5.

    Google Scholar 

  85. Zou YL, Wang GQ. Hydrolysis system for xylan. Plant Physiol Commun. 1999;35:404–10.

    Google Scholar 

  86. Zhang XY, Gao XY, Chen XX, Xu FC. Application of cellulase and hemicellulase and their relativity in molecular structure. J Cell Sci Technol. 2006;14:47–51.

    Google Scholar 

  87. Zhang H, Dai CC, Zhu Q, Yang QY. Research advances in the biodegradation of lignin. J Anhui Agric Sci. 2006;34:1780–4.

    Google Scholar 

  88. Wu K, Zhang SM, Zhu XF. Recent research advances on the lignin biodegradation. J Henan Agric Univ. 2000;34:349–54.

    Google Scholar 

  89. Lubomír R, Ulf R. Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases. Coordin Chem Rev. 2013;257:445–58.

    Google Scholar 

  90. Chao YP, Qian SJ. Fungal laccase and its applications. Progress Biotechnol. 2001;21:23–8.

    Google Scholar 

  91. Upendra ND, Priyanka S, Veda PP, Anoop K. Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 2011;68:117–28.

    Google Scholar 

  92. Qiu WH, Chen HZ. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Bioresour Technol. 2008;99:5480–4.

    Google Scholar 

  93. Chi YJ, Yi HW. Lignin degradation mechanisms of ligninolytic enzyme system, manganese peroxidase, laccase and lignin peroxidase, produced by wood white rot fungi. Mycosystema. 2007;26:153–60.

    Google Scholar 

  94. Lu XM, Liu ZJ, Gao PJ. Chemical mechanism of lignin biodegradation. Chem Ind For Prod. 1996;16:75–82.

    Google Scholar 

  95. Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett. 1990;267:99–102.

    Google Scholar 

  96. Elegir G, Daina S, Zoia L, Bestetti G, Orlandi M. Laccase mediator system: oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme Microb Technol. 2005;37:340–6.

    Google Scholar 

  97. Hernández FJR, Carnicero A, Perestelo F, Hernández MC, Ariasb E, Falcóna MA. Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems. Enzyme Microb Technol. 2006;38:40–8.

    Google Scholar 

  98. Kawai S, Nakagawa M, Ohashi H. Degradation mechanisms of a nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microb Technol. 2002;30:482–9.

    Google Scholar 

  99. Xu Q, Qin M, Shi S, Jin L, Fu Y. Structural changes in lignin during the deinking of old newsprint with laccase-violuric acid system. Enzyme Microb Technol. 2006;39:969–75.

    Google Scholar 

  100. Yang XC, Lu XM, Huang F. Advance of lignocelluloses bioconversion. J Cell Sci Technol. 2007;15:52–8.

    Google Scholar 

  101. Shi Y, Jiang AQ, Dai CC, Lu L. Advanced in microbiological mechanism and application of straw degradation. J Microb. 2002;22:47–50.

    Google Scholar 

  102. Liu CL, Li ZQ, Sun HX, Li CS. The mechanism of microorganism treatment on straw. Syst Sci Compr Stud Agric. 2004;20:313–6.

    Google Scholar 

  103. Chanzy H, Henrissat B, Vuong R. Colloidal gold labelling of 1, 4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 1984;172:193–7.

    Google Scholar 

  104. Henrissat B, Driguez H, Viet C, Schülein M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol. 1985;3:722–6.

    Google Scholar 

  105. Amano Y, Shiroishi M, Nisizawa K, Hoshino E, Kanda T. Fine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1-3), (1-4)-β-D-glucans and xyloglucan. J Biochem. 1996;120:1123–9.

    Google Scholar 

  106. Wang W, Gao PJ. Research progress about the mechanism of lignocelluloses hydrolysis by brown rot fungi. Microbiology. 2002;29:90–3.

    Google Scholar 

  107. Wang W, Duan XY, Sun CY, Gao PJ. Effects of hydroxyl radical HO˙ on cellulose degradation by brown-rot fungi. Mycosystema. 2002;21:400–5.

    Google Scholar 

  108. Li HR. Position and function of white rot fungi in carbon cycle. Microbiology. 1996;23:105–9.

    Google Scholar 

  109. Li HR. White rot fungi an ingenious army for environmental protection. Technol Equip Control Environ Pollut. 2000;1:51–4.

    Google Scholar 

  110. Ejechi BO, Obuekwe CO, Ogbimi AO. Microchemical studies of wood degradation by brown rot and white rot fungi in two tropical timbers. Int Biodeter Biodegr. 1996;38:119–22.

    Google Scholar 

  111. Xu HJ, Liang WZ. White rot fungi’s enzyme system for lignin degradation and their mechanisms. Technol Equip Enviro Pollut Control. 2000;1:51–4.

    Google Scholar 

  112. Du FY, Zhang XY, Wang HX, Yi YL. The law of lignocellullose following decay by white-rot fungi. J Cell Sci Technol. 2005;13:17–25.

    Google Scholar 

  113. Zhang JJ, Luo QH. Research progress in the ligninase and its model complexes. Chemistry. 2001;64:470–7.

    Google Scholar 

  114. Mester T, Tien M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegrad. 2000;46:51–9.

    Google Scholar 

  115. Maki M, Leung KT, Qin WS. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 2009;5(5):500–16.

    Google Scholar 

  116. Ohmiya K, Sakka K, Kimura T, Morimot K. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J Biosci Bioeng. 2003;95:549–61.

    Google Scholar 

  117. Bayer EA, Belaich JP, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Microbiology. 2004;58:521–54.

    Google Scholar 

  118. Luo H. Isolation of effective cellulytic anaerobic bacteria, construction and application of mix culture [dissertation]. Beijing: Chinese Academy of Agricultural Sciences; 2008.

    Google Scholar 

  119. Chen HZ, Li ZH. Key technology of ecological industry for straw. Trans Chinese Soc Agric Eng. 2001;17:1–4.

    Google Scholar 

  120. Chen HZ, Li DM. Common properties in biomass conversion-theorization and development of biomass science and engineering. J Cell Sci Technol. 2006;14:62–8.

    Google Scholar 

  121. Chen HZ, Li ZH. Study on solid-state fermentation and fermenter. Chem Ind Eng Prog. 2002;21:37–9.

    Google Scholar 

  122. Chen HZ, Li ZH. Paradigm and new concept for biochemical engineering-development and its theory base of ecological biochemical engineering. Prog Biotechnol. 2002;22:74–7.

    Google Scholar 

  123. Zhang CZ, Wang ZY. Decomposition of cellulose by thermophilic and anaerobic Clostridium thermocopriae. J Dalian Inst Light Ind. 1998;17:63–7.

    Google Scholar 

  124. Gao ZH, Xu GJ, Zhao FK. Expression of a multi-functional endogenous cellulase gene from mollusc, Ampullaria crossean in Saccharomyces cerevisiae. J Zhejiang Sci Technol Univ. 2007;24:479–82.

    Google Scholar 

  125. Xia A. The kinetics of and influencing factors in enzymatic hydrolysis of cellulose [dissertation]. Sichuan: Sichuan University; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2014). Biological Fundamentals for the Biotechnology of Lignocellulose. In: Biotechnology of Lignocellulose. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6898-7_3

Download citation

Publish with us

Policies and ethics