Skip to main content

Applications of Lignocellulose Biotechnology in Ecological Agriculture

  • Chapter
  • First Online:
Biotechnology of Lignocellulose
  • 2910 Accesses

Abstract

When people are enjoying the convenience brought by sustained economic development, they are also faced with the enormous pressure from population, resources, and the environment. Agricultural waste is an important biomass resource whose main component is lignocellulose. As a by-product of agricultural production and renewable resources, utilizing the numerous resources legitimately not only can meet the needs of agricultural production but also can effectively reduce the production of environmental pollutants and damage to ecology. With the improvement of the level of economic development and science and technology, lignocellulose will play an increasingly important role in the improvement of the agricultural ecological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen HZ, Liu J, Li ZH. Production of single cell protein by fermentation of extracts from hemicellulose autohydrolysis. Eng Chem Metall. 1999;20(4):428–31.

    Google Scholar 

  2. Lin Y. Study on fermentation of fodder for producing SCP from corn straw [dissertation]. Xian: Northwest University of China; 2007.

    Google Scholar 

  3. Wang CJ, Yu YQ. Single cell protein production using lignocellulosic raw materials. Fine Spec Chem. 2000;15:17–8.

    Google Scholar 

  4. Liang XH, Chang JL. Studies on the single cell protein production by crop stalks. Shanxi Food Ind. 2003;3:5–9.

    Google Scholar 

  5. Li YL, Zheng QM, Li JP, Cheng T, Xie F. Application of biotechnology in food industry. J Northeast Agric Univ. 1996;27(3):306–11.

    Google Scholar 

  6. Chen CW, Liu CJ, Guo WJ, Zhang BR. Research and application of protein feed fermentation using crops straw. J Microbiol. 2000;27(4):291–3.

    Google Scholar 

  7. Chen QS, Liu JH, Pan JY, Hu ZH, Yan YL, Zhang XL, Chang PG. Studies on utilizing the multi-strains co-fermentation for biotransformation of corn straw. Biotechnology. 1999;9(4):15–20.

    Google Scholar 

  8. Zhang BR, Liu YF, He XP, Liu WP, Chen YM. The cultural conditions of fermentation distiller’s grains to produce feeding-proteins and the analysis of the fermented products. Acta Microbiol Sin. 1997;37(4):281–5.

    Google Scholar 

  9. Li FS, Gu QB, Jian XD, Meng W. Test on single cell protein feedstuff production from distiller’s grain by using double strains of bacteria. Res Env Sci. 1999;12(6):39–42.

    Google Scholar 

  10. Li LW, Nei MX. Studies on microbial fermentation of lignocellulosic material to produce single cell protein research situation. Shanxi Energy Conserv. 2007;1:29–30.

    Google Scholar 

  11. Ming C, Zhao L, Tian Y, Meng H, Sun L, Zhang Y, Wang F, Li B. Analysis and evaluation on energy utilization of main crop straw resources in China. Trans CSAE. 2008;24(12):291–6.

    Google Scholar 

  12. Ma XG. Study of corn stalk solid-state co-fermentation to produce single cell protein fodder [dissertation]. Lanzhou: Gansu Agriculture University; 2007.

    Google Scholar 

  13. Chen HZ. Science and technology of biomass. Beijing: Chemical Industry Press; 2008.

    Google Scholar 

  14. Ren JL, Sun RC, Liu CF. Advances in chemical modification of hemicellulose. Mod Chem Ind. 2006;26:68–73.

    Google Scholar 

  15. Chen HZ, Qu YB. Studies on single cell protein production by continuous fermentation of steam explosion hydrolysate. Food Ferment Ind. 1992;3:7–12.

    Google Scholar 

  16. Biely P, Krátký Z, Petrakova E, Bauer Š. Growth of Aureobasidium pullulans on waste water hemicelluloses. Folia Microbiol. 1979;24(4):328–33.

    Article  Google Scholar 

  17. Horitsu H, Yahashi Y, Takamizawa K, Kawai K, Suzuki T, Watanabe N. Production of xylitol from D-xylose by Candida tropicalis: optimization of production rate. Biotechnol Bioeng. 1992;40(9):1085–91.

    Article  Google Scholar 

  18. McMillan JD, Boynton BL. Arabinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol. 1994;45(1):569–84.

    Article  Google Scholar 

  19. Skoog K, Hahn-Hägerdal B. Xylose fermentation. Enzyme Microbiol Technol. 1988;10(2):66–80.

    Article  Google Scholar 

  20. Zhou YJ, An XY, Ji XQ. Studies on single cell protein production using crops stalks. China Feed. 2000;8:11–3.

    Google Scholar 

  21. Wu Q, Ma LA. Fermentation production of single cell protein by utilizing bagasse as the sole carbon source. J Hubei Agric Coll. 2002;22(2):150–2.

    MathSciNet  Google Scholar 

  22. Zhou GZ, Hu DZ. Technology and effect of farmer homemade artificial rumen feed. J Southwest Univ Natl. 1992;18(1):102–5.

    Google Scholar 

  23. Guo DZ, Li JJ. Production technology of artificial rumen fermentation feed. Rural Pract Technol. 2002;3:37.

    Google Scholar 

  24. Zhang ZY. Chinese feed. Beijing: China Agriculture Press; 2000.

    Google Scholar 

  25. Zhu W. Research of appending lactic acid bacteria in ensile [dissertation]. Hefei: Anhui Agriculture University; 2007.

    Google Scholar 

  26. He YQ. Studies and application of lactic acid bacteria additives for silage [dissertation]. Wuxi: Jiangnan University; 2004.

    Google Scholar 

  27. Shi JQ, Xu HR. Silage additives and their research and application. Mod Anim Husb Vet. 2006;12:22–3.

    Google Scholar 

  28. Zhu HX. Principle and function of microbial silage feed fermentation. Tech Advis Anim Husb. 2006;8:54–5.

    Google Scholar 

  29. Lu MH. Production technology of microbial silage feed using straw. Feed Rev. 1999;1:31–2.

    Google Scholar 

  30. Dou XT. Biological fixation of nitrogen. Beijing: Agriculture Press; 1989.

    Google Scholar 

  31. Chen J, Han B, Yang JJ. New developmental trend of chemical fertilizer in the future. Yunnan Sci Tech Manage. 2004;17(1):33–4.

    Google Scholar 

  32. Jiang YT, Zhuang XW, Wang YB. An initial discussion on developing bioenergy and organic fertilizer from crops straw. Biomass Chem Eng. 2006;40(6).

    Google Scholar 

  33. Shi L, Zhao YC, Chai XL. Comprehensive utilization techniques progress of crop straws in China. China Biogas. 2005;23(2):11–4.

    Google Scholar 

  34. Zhang HM, Tang AQ. Research progress of straw returning directly. Mod Agric. 2010;3:19–21.

    Google Scholar 

  35. Lv XR, Zhu MX, Lv XL. Present situation and the development prospect of straw returning technology in China. Mod Agric. 2004;9:41–2.

    Google Scholar 

  36. Li J, Zhang ZR, Huang SB, Zhang YQ. Research development of composting techniques with solid wastes. Guangdong Chem Ind. 2008;35(1):93–6.

    Google Scholar 

  37. Li GX, Li YC, Li YF. Research progress of solid waste composting and compost additive. J Agro-Environ Sci. 2003;22(2):252–6.

    Google Scholar 

  38. Chen HZ, Liu J, Li ZH. Humic acid production from steam explosion straw. China Patent 99119641.4. 1999.

    Google Scholar 

  39. Chen HZ, Li ZH. Ecological fertilizer preparation by solid state fermentation using steam explosion straw as raw materials. China Patent 01123915.8. 2001.

    Google Scholar 

  40. Liao JH. Physical and chemical properties of lignin and its study as carrier of fertilizers. Cellul Sci Technol. 2004;2(1):55–60.

    Google Scholar 

  41. Zhu QH, Wu J. Lignin fertilizer research progress on lignin fertilizer from pulping waste liquor. Humic Acid. 2004;2:18–23.

    Google Scholar 

  42. Wang DH, Ma T. Effects of ammonia oxidation lignin on corn biomass and soil urease activity. Guangdong Papermaking. 1999;3:5–8.

    Google Scholar 

  43. Mu HZ, Yang WB, Chen Q, Huang YC. Application of lignin from papermaking black liquor in fertilizer. Environ Protect. 2003;6:51–4.

    Google Scholar 

  44. Mu HZ, Zeng W. Development of phosphate fertilizer and increasing effect research. Agric Environ Protect. 2002;21(1):26–8.

    Google Scholar 

  45. Chen Q, Mu HZ, Huang YC. Development of lignin fertilizer and its effect on availabilities of N fertilizer and P fertilizer. J Agro-Environ Sci. 2003;22(1):41–3.

    Google Scholar 

  46. Le XY, Lu QM, Xiao XS, Liao ZW. Preliminary studies on dilute nitric acid oxidation of papermaking black liquor lignin and chelating zinc fertilizer. J South China Agric Univ. 1999;20(2):91–2.

    Google Scholar 

  47. Ma T, Wang DH. Development and biological test of lignin zinc fertilizer. Guangdong Papermaking. 1999;3:9–13.

    Google Scholar 

  48. Yu XD, Li G, Zhang CX, Lv SX, Liu XL. Research progress of bio-control mechanisms of Trichoderma viride. Rain Fed Crops. 2004;24(6):359–60.

    Google Scholar 

  49. Li LP, Duan DF. Research progress of biological characteristics of Trichoderma spp. and antagonistic action. Plant Doct. 2006;19(4):4–6.

    Google Scholar 

  50. Tang YQ, Xu YL, Zhang HJ, Gao YB, Yu DC. Bio-control application research and development prospects of Trichoderma spp. preparation. Heilongjiang Agric Sci. 2008;1:111–3.

    Google Scholar 

  51. Guo RF, Liu XG. Research progress of trichoderma in utilization of biological control. Chin J Biol Control. 2002;18:180–4.

    Google Scholar 

  52. Papavizas G, Dunn M, Lewis J, Beagle-Ristaino J. Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology. 1984;74(10):1171–5.

    Article  Google Scholar 

  53. Wang HZ, Zhao PJ. Research of liquid culture conditions of Trichoderma harzianum. Acta Agric Zhejiangensis. 1995;7(1):61–2.

    Google Scholar 

  54. Chen BY, Zhou LC, Lu ZP. Fermentation formula of Trichoderma viride and prevention research of rape sclerotium disease. Chin J Biol Control. 2001;17(2):67–70.

    Google Scholar 

  55. Jackson A, Whipps J, Lynch J. Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World J Microbiol Biotechnol. 1991;7(4):494–501.

    Article  Google Scholar 

  56. Lewis J, Papavizas G. Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil Biol Biochem. 1983;15(3):351–7.

    Article  Google Scholar 

  57. Hui YW, Sun Y, Pan YN, Zhao YL. Control effect of Trichoderma viride on plant fungal disease. Acta Agric Boreali-occidentalis Sin. 2003;12(3):96–9.

    Google Scholar 

  58. Zhu H, Lou YC, Lin FC, Li DB. Trichoderma viride spore production by fermentation of municipal waste. J Microbiol. 1999;26(6):387–9.

    Google Scholar 

  59. Su XJ. Study on the prevention and control technology of oligosaccharides for several diseases [dissertation]. Yangling: North West Agriculture and Forestry University; 2004.

    Google Scholar 

  60. Shen XJ, Chen XY, Chen F, Li XZ. Mechanism of oligosaccharides as biological pesticide in microbial disease control. J Anhui Agric Sci. 2010;38(10):5159–62.

    Google Scholar 

  61. Feng PZ. Regulation of oligosaccharides on plant growth. Bull Biol. 2001;36(3):16–7.

    Google Scholar 

  62. Yu Q, Liu Y, Mo XH, Yang CJ, Jiang LH. Applying amino-oligosaccharin on tobacco for controlling tobacco virus disease. Chin J Bio Control. 2002;18(3):128–31.

    Google Scholar 

  63. Mei XG, Yang ZQ, Peng YH, Chen L. Research of biological activity of pectin oligosaccharide. J Huazhong Univ Sci Technol. 1996;24:137–9.

    Google Scholar 

  64. Liu X, Du YG, Bai XF. Relieving effects of oligoglucosamine on the inhibition induced by deoxynivalenol in wheat embryo cells. Acta Botanica Sin. 2001;43(4):370–4.

    Google Scholar 

  65. Li ZM, Zhang HX, Bai ZH, Li HY. Research progress of microbial pectinase. Biotechnol Bull. 2010;3:42–9.

    Google Scholar 

  66. Bai Z, Zhang H, Qi H, Peng X, Li B. Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresour Technol. 2004;95(1):49–52.

    Article  Google Scholar 

  67. Peng X, Zhang H, Bai Z, Li B. Induced resistance to Cladosporium cucumerinum in cucumber by pectinases extracted from Penicillium oxalicum. Phytoparasitica. 2004;32(4):377–87.

    Article  Google Scholar 

  68. Kittur FS, Vishu Kumar AB, Tharanathan RN. Low molecular weight chitosans—preparation by depolymerization with Aspergillus niger pectinase, and characterization. Carbohydr Res. 2003;338(12):1283–90.

    Article  Google Scholar 

  69. Tang MQ. Studies on isolation, purification and enzymological characteristics of pectinase from Aspergillus Niger [dissertation]. Fuzhou: Fujian Normal University; 2004.

    Google Scholar 

  70. Cui FM, Liu H, Zhang SZ. Research of breeding and liquid fermentation conditions of pectinase CP-85211 strains. Acta Microbiol Sin. 1987;27(1):37–44.

    MathSciNet  Google Scholar 

  71. Chen F, Zhao XH. Process conditions of liquid fermentation to produce pectinase. China Brew. 1998;5:4–5.

    Google Scholar 

  72. Chen F, Zhao XH. Research of Aspergillus oryzae solid fermentation to produce pectinase. China Brew. 1998;6:18–20.

    Google Scholar 

  73. Shu XL, Shi QS, Ouyang YS, Chen YB. Overview of microbial fermentation to produce pectinase. Ferment Technol Commun. 2010;1:25–7.

    Google Scholar 

  74. Sharma D, Satyanarayana T. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresour Technol. 2006;97(5):727–33.

    Article  Google Scholar 

  75. Botella C, Diaz A, De Ory I, Webb C, Blandino A. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 2007;42(1):98–101.

    Article  Google Scholar 

  76. Almeida C, Brányik T, Moradas-Ferreira P, Teixeira J. Continuous production of pectinase by immobilized yeast cells on spent grains. J Biosci Bioeng. 2003;96(6):513–18.

    Article  Google Scholar 

  77. Maldonado M, Strasser de Saad A. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol. 1998;20(1):34–8.

    Article  Google Scholar 

  78. Taragano VM, Pilosof AMR. Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation. Enzyme Microb Technol. 1999;25(3–5):411–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2014). Applications of Lignocellulose Biotechnology in Ecological Agriculture. In: Biotechnology of Lignocellulose. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6898-7_5

Download citation

Publish with us

Policies and ethics