Skip to main content

Applications of Lignocellulose Biotechnology in Bioenergy

  • Chapter
  • First Online:
Biotechnology of Lignocellulose

Abstract

A shortage of fossil energy is considered a serious problem. Bioenergy, derived from renewable lignocellulosic resources, has attracted much interest from governments around the world owing to its desirable features: a secure source of supply, limited conflict with land use for food and feed production, and low pollution. Considerable progress has been achieved in bioenergy production, including new methods proposed, new processes developed, new projects established, and so on. However, there are still challenges that need further investigation. The most controversial problem is technical and economical feasibility. This chapter introduces the background, status, and development of bioethanol, biohydrogen, and biogas production and points out problems that exist in relation to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen HZ. Biomass science and technology. Beijing: Chemical Industry Press; 2008.

    Google Scholar 

  2. Chen HZ. Ecological high value-added theory and application of crop straws. Beijing: Chemical Industry Press; 2006.

    Google Scholar 

  3. Li XF, Zhang Y, Luo XG. Advances in production of fuel alcohol by lignocellulosic biomass. Mod Chem Ind. 2009;1:20–6.

    Google Scholar 

  4. Chen HZ, Song JP. A device and method of using sweet sorghum stalk to produce alcohol by solid-state fermentation. China Patent 200610112613X. 2006.

    Google Scholar 

  5. Chen HZ, Fu XG, Wang WD. A method of using steam explosion sweet potato to ferment fuel ethanol directly. China Patent 200810102980.0. 2008.

    Google Scholar 

  6. Chen HZ, Wang L. Research progress on key process and integrated eco-industrial chains of biobased products—proposal of biobased product process engineering. Chin J Process Eng. 2008;8(4):676–81.

    Google Scholar 

  7. Chen HZ, Wang WD, Fu XG. A method of steam explosion pretreated pueraria to ferment fuel ethanol. China Patent 200610114729.7. 2006.

    Google Scholar 

  8. Chen HZ, Wang WD, Fu XG. A method of Pueraria simultaneous saccharification and fermentation fuel ethanol production. China Patent 200610114730.X. 2006.

    Google Scholar 

  9. Chen HZ, Fu XG. A method of using Pueraria to ferment fuel ethanol. China Patent 200810057133.7. 2008.

    Google Scholar 

  10. Xu FJ, Chen HZ, Wang W. Production of ethanol and isoflavones from steam pretreated Radix puerariae by solid state fermentation. Chin J Biotechnol. 2008;24(6):957–61.

    Article  MathSciNet  Google Scholar 

  11. Chen HZ, Liu LY. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol. 2007;98(3):666–76.

    Article  Google Scholar 

  12. Chen HZ, Zhang JX, Liang ZL, Li Y. A process of fuel ethanol, power and pulp production by Pennisetum fraction conversion. China Patent 200810100967.1. 2009.

    Google Scholar 

  13. Song JP, Chen HZ, Ma RY. Research on comprehensive using of sweet sorghum solid state fermentation residue. Liquor Mak. 2007;34(4):52–3.

    Google Scholar 

  14. Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009;86(11):2273–82.

    Article  Google Scholar 

  15. Society JE. Biomass handbook. In: Shi ZP, Hua ZZ, editors. Beijing: Chemical Industry Press.

    Google Scholar 

  16. Jin SY, Zhang LA, Zhang FQ. Key techniques for preparation ethanol with lignocellulosic materials. J Chem Ind Eng. 2009;30(2):32–7.

    Google Scholar 

  17. Zhao SF, Liu ZZ, Zhang MH. Research advance in energy-saving ethanol dehydration techniques. Liquor-Mak Sci Technol. 2006;1:110–13.

    Google Scholar 

  18. Demrba A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Source A. 2005;27(4):327–37.

    Article  Google Scholar 

  19. Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS. Fermentation of biomass‐generated producer gas to ethanol. Biotechnol Bioeng. 2004;86(5):587–94.

    Article  Google Scholar 

  20. Badger PC. Ethanol from cellulose: A general review. In: Trends in new crops and new uses. 2002. p. 17–21.

    Google Scholar 

  21. Phillips S. Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Ind Eng Chem Res. 2007;46(26):8887–97.

    Article  Google Scholar 

  22. Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005;40(12):3693–700.

    Article  Google Scholar 

  23. Wang CC, Wang YQ, Chen JN, Li H, Zhang ZH. Research progress of technological processes in fuel ethanol production from lignocellulosic biomass. Biotechnol Bull. 2010;2:51–7.

    Google Scholar 

  24. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M, Liden G, Zacchi G. Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549–56.

    Article  Google Scholar 

  25. Lv XB. Study on key problems in bioethanol conversion from lignocellulose [dissertation]. Tianjin University; 2009.

    Google Scholar 

  26. Szczodrak J, Targoński Z. Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng. 2004;31(4):300–3.

    Article  Google Scholar 

  27. Xiao X, Li ZH. Paralleled separation and coupling system for the bioconversion of cellulose to ethanol. Biotechnol Inform. 1999;4:27–9.

    MathSciNet  Google Scholar 

  28. Chen HZ, Xu J, Li ZH. Temperature cycling to improve the ethanol production with solid state simultaneous saccharification and fermentation. Appl Biochem Microbiol. 2007;43(1):57–60.

    Article  MathSciNet  Google Scholar 

  29. Koskinen PEP, Beck SR, Örlygsson J, Puhakka JA. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas. Biotechnol Bioeng. 2008;101(4):679–90.

    Article  Google Scholar 

  30. Ryabova OB, Chmil OM, Sibirny AA. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res. 2006;4(2):157–64.

    Article  Google Scholar 

  31. Kim TH, Taylor F, Hicks KB. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol. 2008;99(13):5694–702.

    Article  Google Scholar 

  32. Zhang J, Shao X, Townsend OV, Lynd LR. Simultaneous saccharification and co‐fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222—Part I: kinetic modeling and parameters. Biotechnol Bioeng. 2009;104(5):920–31.

    Article  Google Scholar 

  33. Chen M (2007) Study on key technologies in ethanol production from corn stover [dissertation]. Zhejiang University; 2007.

    Google Scholar 

  34. Christakopoulos P, Macris B, Kekos D. Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol. 1989;11(4):236–9.

    Article  Google Scholar 

  35. Balusu R, Paduru RR, Kuravi S, Seenayya G, Reddy G. Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem. 2005;40(9):3025–30.

    Article  Google Scholar 

  36. He YL, Xiong XY, Su XJ. Research progress in microorganism for ethanol fermentation by pentose. China Brew. 2010;4:8–11.

    Google Scholar 

  37. Wang LL, Ding CH, Wang YM, Zhang Y. Study on the ethanol fermentation from xylose by wild yeasts and genetically engineered strains. J Microbiol. 2009;29(4):84–8.

    Google Scholar 

  38. Tian YH, Lei ZF, Gong DC. Experimental research on xylose fermentation by Pachysolen tannophilus to produce ethanol. Liquor-Mak Sci Technol. 2008;1:45–7.

    Google Scholar 

  39. Tang B, Zhou FY, Zhang QQ, Zhai GW, Chen AN. Screening of Candida shehatae TZ8-13 converting xylose and glucose into ethanol efficiently and its fermentation characteristics. Food Sci. 2009;30(3):159–63.

    Google Scholar 

  40. Sun JF, Xu M, Zhang F, Wang ZX. Novel recombinant Escherichia coli producing ethanol from glucose and xylose. Acta Microbiol Sin. 2004;44(5):600–4.

    Google Scholar 

  41. Cao XH, Ruan QC, Lin HH, Hu KH, Sun SJ, Qi JM. Progress of xylosic fermentation of lignocellulosic materials for bioethanol production. Plant Fiber Sci China. 2010;32(3):166–9.

    Google Scholar 

  42. Bao XM, Gao D, Wang ZN. Expression of xylose isomerase gene(xylA) in Saccharomyces cerevisiae from Clostridium thermohydrosulfuricum. Acta Microbiol Sin. 1999;39(1):49–54.

    Google Scholar 

  43. Du FG, Feng WS. Progress in alcohol production from straw: a demonstration project. Mod Chem Ind. 2009;29(1):16–9.

    Google Scholar 

  44. Chen HZ, Qiu WH. Key technologies for bioethanol production from lignocellulose. Biotechnol Adv. 2010;28(5):556–62.

    Article  Google Scholar 

  45. Chen SW, Yu ZN. Microbial biotechnology—fundamentals of applied microbiology. Beijing: Science Press; 2002.

    Google Scholar 

  46. Zhao X, Ran L. The effect on intestinal flora by Clostridium butyricum viable preparations. Chin J Microecol. 1999;11(6):332–3.

    Google Scholar 

  47. Wu C, Zhang HM, Yi BL. Recent advances in hydrogen generation with chemical methods. Prog Chem. 2005;17(3):423–9.

    Google Scholar 

  48. Midilli A, Rzayev P, Olgun H, Ayhan T. Solar hydrogen production from hazelnut shells. Int J Hydrog Energy. 2000;25(8):723–32.

    Article  Google Scholar 

  49. Midilli A, Dogru M, Howarth CR, Ayhan T. Hydrogen production from hazelnut shell by applying air-blown downdraft gasification technique. Int J Hydrog Energy. 2001;26(1):29–37.

    Article  Google Scholar 

  50. Qian BZ, Zhu JF. Progress in hydrogen production technology. Nat Gas Oil. 2009;27(1):44–8.

    Google Scholar 

  51. Zhang RQ. Catalytic removal of biomass tar and hydrogen generation of producer gas. J Zhengzhou Univ (Nat Sci Ed). 2003;35(4):71–3.

    Google Scholar 

  52. Lv PM, Chang J, Xiong ZH, Wu CZ, Chen Y. Catalytic gasification of biomass residue to produce hydrogen rich gas. Coal Conver. 2002;25(3):32–6.

    Google Scholar 

  53. Lv PM, Chang J, Xiong ZH, Wu CZ, Chen Y. Hydrogen production technologies of biomass residue. Environ Prot. 2002;8:43–5.

    Google Scholar 

  54. Huang GS, Chen MQ, Wang J, Chen MG, Yu ZB. Research progress in hydrogen production by thermochemical conversion of biomass. Biomass Chem Eng. 2008;42(3):39–44.

    Google Scholar 

  55. Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy. 2002;23(2):129–52.

    Article  Google Scholar 

  56. Yuan CM, Yan YJ, Cao JQ. Study of hydrogen production from biomass. Coal Conver. 2002;25(1):18–22.

    Google Scholar 

  57. Corella J, Orio A, Aznar P. Biomass gasification with air in fluidized bed: reforming of the gas composition with commercial steam reforming catalysts. Ind Eng Chem Res. 1998;37(12):4617–24.

    Article  Google Scholar 

  58. Zhou M, Xu QL, Lan P, Qi W, Sun XY, Xin SZ, Yan YJ. Research progress in hydrogen production from biomass. J Jilin Inst Chem Technol. 2009;26(4):35–9.

    Google Scholar 

  59. Liu ZD, Xu J. Research progress in biomass gasification technology of hydrogen production. Tianjin Chem Ind. 2009;23(1):5–8.

    Google Scholar 

  60. Wei L, Xu S, Zhang L, Liu C, Zhu H, Liu S. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. Int J Hydrog Energy. 2007;32(1):24–31.

    Article  Google Scholar 

  61. Wang N, Yang T, Han J, Wang H, Zhao Y, Xiao W. Present research situation and application prospect of hydrogen producing by biotechnology of anaerobic fermentation. Chin Agric Sci Bull. 2008;24(7):454–6.

    Google Scholar 

  62. Li DM, Chen HZ. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrog Energy. 2007;32(12):1742–8.

    Article  Google Scholar 

  63. Chen HZ, Li DM. A method of using immobilized cells for hydrogen production by steam exploded straw enzymatic coupling with fermentation. China Patent 200610114304.6. 2006.

    Google Scholar 

  64. Chen HZ, Li DM. A method of using steam exploded straw to ferment hydrogen by adjusting temperature in fermentation process. China Patent 200610114338.5. 2006.

    Google Scholar 

  65. Noike T, Ko IB, Yokoyama S, Kohno Y, Li YY. Continuous hydrogen production from organic waste. Water Sci Technol. 2005;52(1–2):145–51.

    Google Scholar 

  66. Taguchi F, Yamada K, Hasegawa K, Taki-Saito T, Hara K. Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng. 1996;82(1):80–3.

    Article  Google Scholar 

  67. Van Ginkel SW, Oh SE, Logan BE. Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy. 2005;30(15):1535–42.

    Article  Google Scholar 

  68. Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol. 2003;102(1):83–92.

    Article  Google Scholar 

  69. Lu WY, Liu MH, Chen Y, Wen JP. Research process of anaerobic fermentative hydrogen production and its development future. China Biotechnol. 2006;26(7):99–104.

    Google Scholar 

  70. Li JZ, Ren NQ, Lin M, Wang Y. Hydrogen bio-production by anaerobic fermentation of organic wastewater in pilot-scale. Acta Energiae Solaris Sin. 2002;23(2):252–6.

    Google Scholar 

  71. Valentine DL, Blanton DC, Reeburgh WS. Hydrogen production by methanogens under low-hydrogen conditions. Arch Microbiol. 2000;174(6):415–21.

    Article  Google Scholar 

  72. Tang GL, Sun ZJ, Li YY. Progress in microbial fermentative hydrogen production and hydrogen-producing microorganisms. Trans Chin Soc Agric Eng. 2007;23(12):285–90.

    Google Scholar 

  73. Fardeau ML, Ollivier B, Patel B, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol. 1997;47(4):1013–19.

    Article  Google Scholar 

  74. Kádár Z, De Vrije T, Budde MAW, Szengyel Z, Réczey K, Claassen PAM. Hydrogen production from paper sludge hydrolysate. Appl Biochem Biotechnol. 2003;107(1):557–66.

    Article  Google Scholar 

  75. Kádár Z, de Vrije T, van Noorden GE, Budde MAW, Szengyel Z, Réczey K, Claassen PAM. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol. 2004;114(1):497–508.

    Article  Google Scholar 

  76. De Vrije T, De Haas G, Tan G, Keijsers E, Claassen P. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy. 2002;27(11):1381–90.

    Google Scholar 

  77. Van Niel E, Budde M, De Haas G, Van der Wal F, Claassen P, Stams A. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticu and Thermotoga elfii. Int J Hydrog Energy. 2002;27(11):1391–8.

    Google Scholar 

  78. Van Niel EWJ, Claassen PAM, Stams AJM. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng. 2003;81(3):255–62.

    Article  Google Scholar 

  79. Xing XH, Zhang C. Research progress in dark microbial fermentation for bio-hydrogen production. Chin J Bioprocess Eng. 2005;3(1):1–8.

    Google Scholar 

  80. Ma K, Adams MW. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multi-functional enzyme involved in the reduction of elemental sulfur. J Bacteriol. 1994;176(21):6509–17.

    Google Scholar 

  81. Zhang LH. Phototrophic hydrogen production using mixed culture biotechnology (MCB) [dissertation]. Zhejiang University; 2008.

    Google Scholar 

  82. Li BK, Lv BN, Ren NQ. The bio-producing hydrogen ability and coordination of anaerobic active sludge and hydrogenogenic bacteria. Acta Sci Circumstantiate. 1997;17(4):459–63.

    Google Scholar 

  83. Liu B, Wang HY, Zhao JM, Xu HL, Li XT. Ability of hydrogen production by three strains and their synergistic effect. Food Ferment Ind. 2003;29(8):23–6.

    Google Scholar 

  84. Zhang C, Xing XH. Quantification of a specific bacterial strain in an anaerobic mixed culture for biohydrogen production by the aerobic fluorescence recovery (AFR) technique. Biochem Eng J. 2008;39(3):581–5.

    Article  MathSciNet  Google Scholar 

  85. Fan YT, Li CL, Hou HW, Lu HJ, Lai JQ. Studies on biohydrogen production by biohydrogen fermentation of natural anaerobic microorganism. China Environ Sci. 2002;22(4):370–4.

    Google Scholar 

  86. Han XH, Huang XY, He B, Chen LH. A study of culture conditions for several mixed strains of Rhodopseudomonas. J Hainan Norm Univ (Nat Sci). 2004;17(3):274–7.

    Google Scholar 

  87. Miura Y, Saitoh C, Matsuoka S, Miyamoto K. Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotechnol Biochem. 1992;56(5):751–4.

    Article  Google Scholar 

  88. Zhang QG, Lei TZ, You XF, Yang QF, Yuan YF, Zhang JH. Study on hydrogen production influence factor. Acta Energiae Solaris Sin. 2005;26(2):248–52.

    Google Scholar 

  89. Miyake J, Mao XY, Kawamura S. Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum. J Ferment Technol. 1984;62(6):531–5.

    Google Scholar 

  90. Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng. 2001;91(1):58–63.

    Google Scholar 

  91. Li DM, Chen HZ, Li ZH (2003) Research and development of hydrogen production by biological technology. Biotechnol Inform. 2003;(4):1–5.

    Google Scholar 

  92. Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng. 2001;74(4):280–7.

    Article  MathSciNet  Google Scholar 

  93. Cheng XY, Zhuang GQ, Su ZG, Liu CZ. Recent research progress in biogas fermentation process. Chin J Process Eng. 2008;8(3):607–15.

    Google Scholar 

  94. Liu JF. German rural renewable energy–biogas development and utilization experience. China Resour Compr Util. 2004;11:24–8.

    Google Scholar 

  95. Zhang LY. The first train driven by biogas started. Sol Energy. 2005;6:62.

    Google Scholar 

  96. Zhang B, Li WZ, Du J. Survey and development of biogas energy. J Agric Mech Res. 2007;3:171–3.

    Google Scholar 

  97. Mao Y, Zhang WD. Discussion on benefits of eco-agricultural model with biogas fermentation as a link. China Biogas. 2005;23(3):36–9.

    Google Scholar 

  98. Chang JT, Lei QQ, Ji CX. The mode and effectiveness of rural energy “four in one” in north of China. Chin Countrys Well-off Technol. 2005;6:12.

    Google Scholar 

  99. Liu H, Liu XL, Qiu J, Chen J. The effects of C/N ratio on the production of volatile fatty acids and the metabolic pathway of anaerobic fermentation of sewage sludge. Acta Scientiae Circumstantiae. 2010;2:340–6.

    Google Scholar 

  100. Sun LL. The study of high efficient biogas fermentation of straw [dissertation]. Chinese Academy of Agricultural Sciences; 2009.

    Google Scholar 

  101. Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN. A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrog Energy. 2008;33(18):4739–46.

    Article  Google Scholar 

  102. Liu D, Zeng RJ, Angelidaki I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 2006;40(11):2230–6.

    Article  Google Scholar 

  103. Zhu SQ, Zhang YL, Zhang WQ, Zhang JF. The progress of dry anaerobic fermentation technology. Renew Energy Resour. 2009;27(2):46–51.

    Google Scholar 

  104. Ye XM, Chang ZZ. State of arts and perspective of dry anaerobic digestion of organic solid waste. J Ecol Rural Environ. 2008;24(2):76–9.

    Google Scholar 

  105. Ye S, Wei JS. Automatic nesting device of biogas dry fermentation. China Biogas. 1989;7(4):17–9.

    Google Scholar 

  106. Ma YR, Hui KJ. The technology and effectiveness of dry fermentation biogas in constant pressure in Ningxia dry, cold region. China Biogas. 1990;8(2):25–6.

    Google Scholar 

  107. Gan RH. Study on the stirring reactor for the poultry and livestock manure digestion [dissertation]. Huazhong Agricultural University; 2004.

    Google Scholar 

  108. Zhang CA, Liu Y, Wang YQ, Yuan CB, Yao L. Research review on the technology of biogas production in winter. Chin Agric Sci Bull. 2008;24(8):469–72.

    Google Scholar 

  109. Cai X, He Y, Dai RH, Liu Y, An D. Influence factors and research progress in new clean energy produced from cellulosic matter. China Environ Prot Ind. 2010;1:22–6.

    Google Scholar 

  110. Chen HZ, Li ZH. A method of utilizing straw and urban waste to ferment biogas by cyclic stimulation solid-state fermentation. China Patent 01130972.5. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2014). Applications of Lignocellulose Biotechnology in Bioenergy. In: Biotechnology of Lignocellulose. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6898-7_6

Download citation

Publish with us

Policies and ethics