Skip to main content

Towards a Supramolecular Photochemistry: Assembly of Molecular Components to Obtain Photochemical Molecular Devices

  • Chapter
Supramolecular Photochemistry

Part of the book series: NATO ASI Series ((ASIC,volume 214))

Abstract

Supramolecular photochemistry is an emerging and rapidly growing research area, most attractive from a fundamental point of view and very promising for a variety of applications. An appropriate assembly of molecular components capable of performing light-induced functions can be called a photochemical molecular device (PMD). The most important functions that can be performed by PMDs are (i) generation and migration of electronic energy, (ii) photoinduced vectorial transport of electric charge, (iii) photoinduced conformational changes, and (iv) control and tuning of photochemical and photophysical properties. The aim of this paper is to describe PMDs, to review their possible applications, to single out their molecular components, and to examine the requirements needed for these components and for the entire device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and Notes

  1. G.C. Pimentel, Opportunities in Chemistry, National Academy Press, Washington (DC), 1985.

    Google Scholar 

  2. C. Creutz, Prog. Inorg. Chem., 30, 1 (1983).

    Article  CAS  Google Scholar 

  3. J.M. Lehn, Pure Appl. Chem., 52, 2441 (1980).

    Article  CAS  Google Scholar 

  4. J.M. Lehn, in IUPAC Frontiers of Chemistry, K.J. Laidler, ed., Pergamon Press, Oxford, 1982, p.265.

    Google Scholar 

  5. J.P. Sauvage, Nouv. J. Chim., 9, 299 (1985).

    CAS  Google Scholar 

  6. D. Moebius, Acc. Chem. Res., 14, 63 (1981).

    Article  CAS  Google Scholar 

  7. J.H. Fendler, Science, 223, 888 (1984).

    Article  CAS  Google Scholar 

  8. J Simon, J.J. André, A. Skoulios, Nouv. J. Chim., 10, 295 (1986).

    CAS  Google Scholar 

  9. H.M. Colquhoun, J.F. Stoddart, D.J. Williams, Angew. Chem. Int. Ed. Engl., 25, 487 (1986).

    Article  Google Scholar 

  10. J.L. Pierre, P. Baret, Bull. Soc. Chim. France, II-367 (1983).

    Google Scholar 

  11. F. Voegtle, ed., Top. Curr. Chem., 98, (1981); idem, 101, (1982).

    Google Scholar 

  12. D.J. Cram, Angew. Chem. Int. Ed. Engl., 25, 1039 (1986).

    Article  Google Scholar 

  13. J.M. Lehn, Science, 227, 849 (1985).

    Article  CAS  Google Scholar 

  14. R.C. Hayward, Chem. Soc. Rev., 12, 285 (1983).

    Article  CAS  Google Scholar 

  15. C. Sirlin, Bull. Soc. Chim. France, II-5 (1984).

    Google Scholar 

  16. R.H. Holm, J.M. Berg, Acc. Chem. Res., 19, 363 (1986).

    Article  CAS  Google Scholar 

  17. A. Aviram, M.A. Rattier, Chem. Phys. Letters, 29, 277 (1974).

    Article  CAS  Google Scholar 

  18. F.L. Carter, ed., Molecular Electronic Devices, Dekker, New York (N.Y.), 1982;

    Google Scholar 

  19. F.L. Carter, Physica, 10D, 175 (1984).

    CAS  Google Scholar 

  20. M.S. Wrighton, Comments Inorg. Chem., 4, 269 (1985).

    Article  CAS  Google Scholar 

  21. R.L. Greene, G.B. Street, Science, 226, 651 (1984).

    Article  CAS  Google Scholar 

  22. W.J. Feast, Chem. Ind. (London), 263 (1985).

    Google Scholar 

  23. W.J. Albery, A.R. Hillman, in Annual Report C, 78 (1981), The Royal Society, London, 1982, p.377.

    Google Scholar 

  24. R.W. Murray, in Electroanalytical Chemistry, Vol. 13, A.J. Bard, ed., Dekker, New York (N.Y.), 1984, p.191.

    Google Scholar 

  25. V. Balzani, N. Sabbatini, F. Scandola, Chem. Rev., 86, 319 (1986).

    Article  CAS  Google Scholar 

  26. D. Lexa, M. Momenteau, J.M. Savéant, F. Xu, Inorg. Chem., 25, 4857 (1986).

    Article  CAS  Google Scholar 

  27. See, for example: R.J. Geue, T.W. Hambley, J.M. Harrowfield, A.M. Sargeson, M.R. Snow, J. Am. Chem. Soc., 106, 5478 (1984), and references therein.

    Article  CAS  Google Scholar 

  28. N.J. Turro, Angew. Chem. Int. Ed. Engl., 25, 882 (1986).

    Article  Google Scholar 

  29. J.B. Hendrickson, Acc. Chem. Res., 19, 274 (1986).

    Article  CAS  Google Scholar 

  30. An exact definition of “supramolecular species” is concenptually diffficult. By supramolecular species we intend an assembly of a relatively small number of molecular components such as to maintain the fundamental properties of the components and, in case, to exhibit some new properties of the assembly. Within these boundaries, the nature (ionic, covalent, hydrogenic, etc.) of the binding between the components is not relevant.

    Google Scholar 

  31. G. Ciamician, Bull. Soc. Chim. France, Ser. 4, 3, (1908);

    Google Scholar 

  32. G. Ciamician, Science, 36, 385 (1912).

    Article  CAS  Google Scholar 

  33. N.J. Turro, Modern Molecular Photochemistry, The Benjamin, Menlo Park (Cal), 1978.

    Google Scholar 

  34. J.D. Coyle, Introduction to Organic Photochemistry, J. Wiley, Chichester, 1986.

    Google Scholar 

  35. A.W. Adamson, P.D. Fleischauer, Concepts of Inorganic Photochemistry, J. Wiley, New York (N.Y.), 1975.

    Google Scholar 

  36. Journal of Chemical Education, 60, October issue (1983).

    Google Scholar 

  37. G.L. Geoffroy, M.S. Wrighton, Organometallic Photochemistry, Academic Press, New York (N.Y.), 1979.

    Google Scholar 

  38. See, for example: K. Sauer, in Encyclopedia of Plant Physiology, Vol. 19, L.A. Staehelin and C.J. Arntzen, eds., Springer-Verlag, Berlin, 1986, p.85.

    Google Scholar 

  39. C. Joachim, J.P. Launay, Nouv. J. Chim., 8, 723 (1984).

    CAS  Google Scholar 

  40. P. Fromherz, W. Arden, J. Am. Chem. Soc., 102, 6211 (1980).

    Article  CAS  Google Scholar 

  41. K.J. Moore, L. Lee, J.E. Figard, J.A. Gelroth, A.J. Stinson, H.D. Wohlers, J.D. Petersen, J. Am. Chem. Soc., 105, 2274 (1983)

    Article  CAS  Google Scholar 

  42. J.D. Petersen, W.R. Murphy, Jr., R. Sahai, K.J. Brewer, R.R. Ruminski, Coord. Chem. Revs., 64, 261 (1985).

    Article  CAS  Google Scholar 

  43. P.A. Liddell, D. Barrett, L.R. Makings, P.J. Pessiki, D. Gust, T.A. Moore, J. Am. Chem. Soc., 108, 5350 (1986).

    Article  CAS  Google Scholar 

  44. H. Levanon, A. Regev, P.K. Das, J. Phys. Chem., 91, 14 (1987).

    Article  CAS  Google Scholar 

  45. P. Fromherz, Chem. Phys. Letters, 26, 221 (1974).

    Article  CAS  Google Scholar 

  46. D. Getz, A. Ron, M.B. Rubin, S. Speiser, J. Phys. Chem., 84, 768 (1980).

    Article  CAS  Google Scholar 

  47. N. Tamai, T. Yamazaki, I. Yamazaki, J. Phys. Chem., 91, 841 (1987).

    Article  CAS  Google Scholar 

  48. N. Sabbatini, S. Perhatoner, V. Balzani, J.M. Lehn, B. Alpha, this book.

    Google Scholar 

  49. For solid-state analogs, see: D.J. Zalucha, J.C. Wright, F.K. Fong, J. Chem. Phys., 59, 997 (1973);

    Article  CAS  Google Scholar 

  50. R. Reisfeld, C.K. Jørgensen, Lasers and Excited States of Rare Earths, Springer-Verlag, Berlin, 1977.

    Book  Google Scholar 

  51. G.F. Mes, H.J. van Ramesdonk, J.W. Verhoeven, J. Am. Chem. Soc., 106, 1335 (1984).

    Article  CAS  Google Scholar 

  52. M.R. Wasielewski, M.P. Niemczyk, W.A. Svec, E.B. Pewitt, J. Am. Chem. Soc., 107, 5562 (1985).

    Article  CAS  Google Scholar 

  53. D. Gust, T.A. Moore, P.A. Liddell, G.A. Nemeth, L.R. Makings, A.L. Moore, D. Barrett, P.J. Pessiky, R.V. Bensasson, M. Rougée, C. Chachaty, F.C. De Schryver, M. Van der Auweraer, A.R. Holzwarth, J.S. Connolly, J. Am. Chem. Soc., 109, 846 (1987).

    Article  CAS  Google Scholar 

  54. V. Balzani, A. Juris, F. Scandola, in Homogeneous and Heterogeneous Photocatalysis, E. Pelizzetti, N. Serpone, eds., Reidel, Dordrecht, 1986, p.1.

    Google Scholar 

  55. E.E. Polymeropoulos, D. Moebius, H. Kuhn, J. Chem. Phys., 68, 3918 (1978).

    Article  CAS  Google Scholar 

  56. M. Van der Auweraer, F. Willig, K.P. Charlé, Chem. Phys Letters, 128, 214 (1986).

    Article  Google Scholar 

  57. M. Graetzel, ed., Energy Resources through Photochemistry and Catalysis, Academic Press, New York (N.Y.), 1983.

    Google Scholar 

  58. T. Matsuo, T. Sakamoto, K. Takuma, K. Sakura, T. Ohsako, J. Phys. Chem., 85, 1277 (1981).

    Article  CAS  Google Scholar 

  59. E.E. Yablonskaya, V.Ya. Shafirovich, Nouv. J. Chim., 8, 117 (1984).

    CAS  Google Scholar 

  60. P. Seta, E. Bienvenue, A.L. Moore, P. Mathis, R.V. Bensasson, P. Liddell, P.J. Pessiky, A. Joy, T.A. Moore, D. Gust, Nature (London), 316, 653 (1985).

    Article  CAS  Google Scholar 

  61. D. Moebius, Ber. Bunsenges. Phys. Chem., 82, 848 (1978).

    CAS  Google Scholar 

  62. J.P. Launay, Abstracts of the 2nd. Int. Workshop on Molecular Electronic Devices, Washington (DC), 1983.

    Google Scholar 

  63. M. Blank, L.M. Soo, N.H. Wassermann, B.F. Erlanger, Science, 214, 70 (1981).

    Article  CAS  Google Scholar 

  64. S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, O. Manabe, J. Am. Chem. Soc., 103, 111 (1981).

    Article  CAS  Google Scholar 

  65. S. Shinkai, T. Ogawa, Y. Kusano, O. Manabe, K. Kikukawa, T. Goto, T. Matsuda, J. Am. Chem. Soc., 104, 1960 (1982).

    Article  CAS  Google Scholar 

  66. S. Shinkai, T. Minami, Y. Kusano, O. Manabe, J. Am. Chem. Soc., 104, 1967 (1982).

    Article  CAS  Google Scholar 

  67. J.P. Launay, S. Woitellier, M. Sowinska, M. Tourrel, C. Joachim, Abstracts of the 3rd. Int. Symposium on Molecular Electronic Devices, Washington (DC), 1986.

    Google Scholar 

  68. C. Joachim, J.P. Launay, Chem. Phys., 109, 93 (1986).

    Article  CAS  Google Scholar 

  69. W. Rettig, Angew. Chem. Int. Ed. Engl., 25, 971 (1986).

    Article  Google Scholar 

  70. G. Jones II, P.T. Xuan, S.H. Chiang, in Solar Energy: Chemical Conversion and Storage, R.R. Hautala, R.B. King, C. Kutal, eds., The Humana Press, Clifton (NJ), 1979, p.271; R.R. Hautala, R.B. King, C. Kutal, idem, p.333.

    Google Scholar 

  71. R.R. Hautala, R.B. King, C. Kutal, idem, p.333.

    Google Scholar 

  72. T. Shimidzu, M. Yoshikawa, J. Membrane Sci., 13, 1 (1983).

    Article  CAS  Google Scholar 

  73. S. Shinkai, K. Miyazaki, O. Manabe, Angew. Chem. Int. Ed. Engl., 24, 866 (1985).

    Article  Google Scholar 

  74. S. Shinkai, Y. Honda, Y. Kusano, O. Manabe, J. Chem. Soc., Chem. Commun., 848 (1982).

    Google Scholar 

  75. S. Shinkai, H. Kinda, O. Manabe, J. Am. Chem. Soc., 104, 2933 (1982).

    Article  CAS  Google Scholar 

  76. S. Shinkai, T. Minami, Y. Kusano, O. Manabe, J. Am. Chem. Soc., 105, 1851 (1983).

    Article  CAS  Google Scholar 

  77. F. Moriwaki, A. Ueno, T. Osa, F. Hamada, K. Murai, Chem. Letters, 1865 (1986).

    Google Scholar 

  78. R.L. Brookfield, H. Ellul, A. Harriman, J. Chem. Soc., Faraday Trans. 2, 81, 1837 (1985).

    Google Scholar 

  79. C.A. Bignozzi, S. Roffia, F. Scandola, J. Am. Chem. Soc., 107, 1644 (1985).

    Article  CAS  Google Scholar 

  80. C.A. Bignozzi, F. Scandola, Inorg. Chem., 23, 1540 (1984).

    Article  CAS  Google Scholar 

  81. J.P. Konopelski, F. Kotzyba-Hibert, J.M. Lehn, J.P. Desvergne, F. Fagès, A. Castellan, H. Bouas-Laurent, J. Chem. Soc., Chem. Commun., 433 (1985).

    Google Scholar 

  82. H.G. Loehr, F. Voegtle, Acc. Chem. Res., 18, 65 (1985).

    Article  CAS  Google Scholar 

  83. S. Shinkai, K. Kameoka, K. Ueda, O. Manabe, J. Am. Chem. Soc., 109, 923 (1987).

    Article  CAS  Google Scholar 

  84. A. Juris, F. Barigelletti, S. Campagna, V. Balzani, P. Belser, A. von Zelewsky, Coord. Chem. Rev., in press.

    Google Scholar 

  85. M.F. Manfrin, L. Moggi, V. Castelvetro, V. Balzani, M.W. Hosseini, J.M. Lehn, J. Am. Chem. Soc., 107, 6888 (1985).

    Article  CAS  Google Scholar 

  86. J.A. Reitz, W.J. Dressick, J.N. Demas, B.A. Draff, J. Am. Chem. Soc., 108, 5344 (1986).

    Article  CAS  Google Scholar 

  87. S. Tazuke, S. Kurihara, H. Yamaguchi, T. Ikeda, J. Phys. Chem., 91, 249 (1987).

    Article  CAS  Google Scholar 

  88. H.S. Blair, T.K. Law, Polymer, 21, 1475 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Balzani, V., Moggi, L., Scandola, F. (1987). Towards a Supramolecular Photochemistry: Assembly of Molecular Components to Obtain Photochemical Molecular Devices. In: Balzani, V. (eds) Supramolecular Photochemistry. NATO ASI Series, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3979-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3979-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8265-5

  • Online ISBN: 978-94-009-3979-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics