Skip to main content

Mineral nutrition

  • Chapter
The Groundnut Crop

Part of the book series: World Crop Series

Abstract

High yields of quality groundnuts require good nutrition. Sixteen elements [(carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), boron (B), molybdenum (Mo), and chlorine (Cl)] are considered essential for plants although not all have been proved essential for any particular species. Of the sixteen, C, H and O are supplied in the atmosphere or in the air space of the soil and are called non-mineral nutrients. They are usually assumed to be plentiful, even though O may be limiting due to excessive water in soil pores. Therefore neither fertilizer nor soil amendments are applied for the expressed purpose of supplying these three elements. In addition, nickel (Ni) and cobalt (Co) are essential for some legumes and sodium (Na), silicon (Si), selenium (Se), and aluminum (Al) have been shown to be beneficial in some cases. Quantities of nutrients removed by groundnut pods and vines are presented in Table 7.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, Fred and Hartzog, D.L. (1980) The nature of yield of Florunner peanuts to lime. Peanut Science, 7, 120–123.

    Article  CAS  Google Scholar 

  • Adams, James F., Hartzog, D.R. and Nelson, D.P. (1993) Supplemental calcium application on yield, grade and seed quality of runner peanut. Agronomy Journal, 85, 86–93.

    Article  CAS  Google Scholar 

  • Allison, A.H. (1980) Agronomic recommendations and procedures, in 1980 Peanut Production Guide, Virginia Polytechnic Institute and State University, Blacksburg, VA, pp. 3–6.

    Google Scholar 

  • Alva, A.K., Gascho, G.J. and Hodges, S.C. (1989a) Peanut yield and grade vs. soil calcium indices in coastal plain soils. Agronomy Abstracts, p. 232.

    Google Scholar 

  • Alva, A.K., Gascho, G.J. and Guang, Yang (1989b) Gypsum material effects on peanut and soil calcium. Communications in Soil Science and Plant Analysis, 20, 1727–1744.

    Article  CAS  Google Scholar 

  • Alva, A.K., Gascho, G.J. and Guang, Yang (1991) Soil solution and extractable calcium in gypsum-amended coastal plain soils used for peanut culture. Communications in Soil Science and Plant Analysis, 22, 99–116.

    Article  CAS  Google Scholar 

  • Anderson, O.E. (1964) Manganese, in Micronutrients and Crop Production in Georgia, (ed. R.L. Carter), University of Georgia College of Agriculture Bulletin N.S. 126, pp. 33–41.

    Google Scholar 

  • Anon. (1965) Agricultural Progress, Virginia Agricultural Experiment Station Research Report 102, 70 pp.

    Google Scholar 

  • Anon. (1972) The Annual Report of the Agricultural Research Council of Malawi.

    Google Scholar 

  • Arrendell, S., Wynne, J.C., Elkan, G.H. and Isleib, T.G. (1985) Variation from nitrogen fixation among progenies of a Virginia x Spanish peanut cross. Crop Science, 25, 865–869.

    Article  Google Scholar 

  • Arrendell, S., Wynne, J.C., Elkan, G.H. and Schneeweis, T.J. (1988) Selection among early generation peanut progeny for enhanced nitrogen fixation. Peanut Science, 15, 90–93.

    Article  Google Scholar 

  • Asokan, S. and Raj, D. (1974) Effect of forms and levels of boron application on groundnut. Madras Agricultural Journal, 61(8), 467–471.

    Google Scholar 

  • Bahl, G.S., Baddesha, H.S., Pasricha, N.S. and Aulakh, M.S. (1986) Indian Journal of Agricultural Science, 56, 429–433.

    CAS  Google Scholar 

  • Ball, S.T., Wynne, J.C., Elkan, G.H. and Schneeweis, T.J. (1983) Effects of inoculation and applied nitrogen on yield, growth and nitrogen fixation of two peanut cultivars. Field Crops Research, 6, 85–91.

    Article  Google Scholar 

  • Barber, S.A. (1984) Soil Nutrient Bioavailability: A Mechanistic Approach, John Wiley & Sons, New York, NY.

    Google Scholar 

  • Bell, M.J. (1985a) Calcium nutrition of peanuts (Arachis hypogaea L.) on Cockatoo sands of the Ord River irrigation area. Australian Journal of Experimental Agriculture, 25, 642–648.

    Article  CAS  Google Scholar 

  • Bell, M.J. (1985b) Phosphorus nutrition of peanut (Arachis hypogaea L.) on Cockatoo sands of the Ord River Irrigation Area. Australian Journal of Experimental Agriculture, 25, 649–653.

    Article  Google Scholar 

  • Bell, R.W., Edwards, D.G and Asher, C.J. (1989) External calcium requirements for growth and nodulation of six tropical legumes grown in flowing solution culture. Australian Journal of Agriculture Research, 40, 85–96.

    Article  Google Scholar 

  • Bell, R.W., Kirk, G., Plaskett, D. and Loneragan, J.F. (1990) Diagnosis of zinc deficiency in peanut (Arachis hypogaea L.) by plant analysis. Communications in Soil Science and Plant Analysis, 21, 273–285.

    Article  CAS  Google Scholar 

  • Benac, R. (1976) Action de la concentration en manganese de la solution nutritive sur le comportement de l’arachide (Arachis hypogaea L.). Oléagineux, 1(12), 539–543.

    Google Scholar 

  • Beringer, H. and Taha, M.A. (1976) 45Calcium absorption by two cultivars of groundnut (Arachis hypogaea). Experimental Agriculture, 12, 1–7.

    Article  CAS  Google Scholar 

  • Bhan, S. (1977) Nutrient uptake by groundnut (Arachis hypogaea L.) as influenced by variety, spacing and soil fertility on desert soil. Indian Journal of Agricultural Research, 11, 65–74.

    Google Scholar 

  • Black, M.C., Pataky, J.K., Beute, M.K. and Wynne, J.C. (1984) Management tactics that complement host resistance for control of cylindrocladium black rot of peanuts. Peanut Science, 11, 70–73.

    Article  Google Scholar 

  • Blarney, F.P.C. and Chapman, J. (1979) Boron toxicity in Spanish groundnuts. Agrochemophysica, 11, 57–59.

    Google Scholar 

  • Blarney, F.P.C., Chapman, J. and Smith, M.F. (1981) Boron fertilization and soil amelioration effects on the boron nutrition of Spanish groundnuts. Crop Production, 10, 143–146.

    Google Scholar 

  • Bledsoe, R.W., Comar, C.L. and Harris, H.C. (1949) Absorption of radioactive calcium by the peanut fruit. Science, 109, 329–330.

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe, R.W. and Harris, H.C. (1947) Nutrition and physiology of the peanut. University of Florida Agricultural Experiment Station Annual Report.

    Google Scholar 

  • Bledsoe, R.W. and Harris, H.C. (1948) Nutrition and physiology of the peanut. University of Florida Agricultural Experiment Station Annual Report.

    Google Scholar 

  • Bledsoe, R.W. and Harris, H.C. (1949) Nutrition and physiology of the peanut. University of Florida Agricultural Experiment Station Annual Report.

    Google Scholar 

  • Bockelee-Morvan, A. and Martin, G. (1966) Les besoins en soufe de L’Arachide effets sur les rendements. Oléagineux, 11, 679–682.

    Google Scholar 

  • Bolhuis, G.G. and Stubbs, R.W. (1955) The influence of calcium and other elements on the fruitification of the peanut in connection with absorption capacity of its gynophores. Methods Journal of Agricultural Science, 3, 220–237.

    CAS  Google Scholar 

  • Boote, K.J., Stansell, J.R., Schubert, A.M. and Stone, J.T. (1982) Irrigation, water use, and water relations, in Peanut Science and Technology (eds H.E. Pattee and C.T. Young), American Peanut Research and Education Society Inc., Yoakum, TX.

    Google Scholar 

  • Boswell, F.C. (1964) Copper, in Micronutrients and Crop Production in Georgia, (ed. R.L. Carter) University of Georgia Agricultural Experiment Stations Bulletin N.S. 126, pp. 22–28.

    Google Scholar 

  • Boswell, F.C, Anderson, O.E. and Welsh, L.F. (1967) Molybdenum studies with peanuts in Georgia, University of Georgia Agricultural Experiment Stations Research Bulletin 9.

    Google Scholar 

  • Bouyer, S. and Collot, L. (1952) Oligoéléments et arachide. Bulletin Agronomique de la Ministère de France d’outre mer, 7, 77–88 (Field Crops Abstracts, 6(3), 184).

    Google Scholar 

  • Boyd, H.W. (1971) Manganese toxicity to peanuts in autoclaved soil. Plant and Soil, 34, 133–144.

    Article  Google Scholar 

  • Branch, W.D. and Gascho, G.J. (1985) Screening for low fertility tolerance among peanut cultivars. Agronomy Journal, 77, 963–965.

    Article  Google Scholar 

  • Carter, R.L. (1964) Zinc, in Micronutrients and Crop Production in Georgia, (ed. R.L. Carter), University of Georgia Agricultural Experiment Stations Bulletin N.S. 126, pp. 53–63.

    Google Scholar 

  • Chahal, R.S. and Ahluwalia, S.P.S. (1977) Neutroperiodism in different varieties of groundnut with respect to zinc and its uptake as affected by phosphorus application. Plant and Soil, 47, 541–546.

    Article  CAS  Google Scholar 

  • Chauhan, Y.S., Jain, V.K., Kandekar, M.P., and Jain, P.C. (1988) Response of groundnut (Arachis hypogaea) varieties to phosphorus fertilization. Indian Journal of Agricultural Science, 58, 359–361.

    Google Scholar 

  • Chrudimsky, W.W. (1970) Boron assimilation and its effect on the quality of Spanish peanuts. Ph.D. thesis, Oklahoma State University, 92 pp.

    Google Scholar 

  • Cope, J.T., Evans, C.E. and Williams, H.C. (1981) Soil test fertilizer recommendations for Alabama crops. Alabama Agricultural Experiment Station Circular 251, Auburn University, Alabama.

    Google Scholar 

  • Cope, J.T., Starling, J.G., Ivey, H.W. and Mitchell, C.C. Jr (1984) Response of peanuts and other crops to fertilizers and lime in two long term experiments. Peanut Science, 11, 91–94.

    Article  Google Scholar 

  • Cox, F.R. (1990) A note of the effect of soil reaction and zinc concentration of peanut tissue zinc. Peanut Science 17, 15–17.

    Article  CAS  Google Scholar 

  • Cox, F.R., Adams, F. and Tucker, B.B. (1982) Liming, fertilization and mineral nutrition, Chapter 6 in Peanut Science and Technology, (eds H.E. Pattee and C.T. Young), American Peanut Research and Education Soc, Inc., Yoakum, TX.

    Google Scholar 

  • Cox, F.R., and Reid, P.H. (1964) Calcium-boron nutrition as related to concealed damage in peanuts. Agronomy Journal, 56, 173–176.

    Article  CAS  Google Scholar 

  • Cox, F.R., Sullivan, G.A. and Martin, C.K. 1976. Effect of calcium and irrigation treatments on peanut yield, grade, and seed quality. Peanut Science, 3, 81–85.

    Article  CAS  Google Scholar 

  • Csinos, A.S. and Gaines, T.P. (1986) Peanut pod rot complex: A geocarposphere nutrient imbalance. Plant Disease, 68, 61–65.

    Google Scholar 

  • Davidson, J.I., Blankenship, P.D., Sanders, T.H. et al. (1983) Effect of row spacing, row orientation and gypsum on the production and quality of nonirrigated peanuts. Proceedings of the American Peanut Research and Education Society, 15, 46–51.

    Google Scholar 

  • Davis-Carter, J.G., Parker, M.B. and Gaines, T.P. (1990) Zinc toxicity symptoms in peanut. Proceedings of The American Peanut Research and Education Society, Inc. July 10–13, 1990, Stone Mountain, GA, p. 64.

    Google Scholar 

  • Davis-Carter, J.G., Parker, M.B. and Gaines, T.P. (1991) Interaction of soil zinc, calcium and pH with zinc toxicity in peanuts, in Utilization of Acidic Soils for Crop Production (eds R.J. Wright, V.C. Baligar, and R.P. Murrmann), Kluwer Academic Publishers, pp. 339–347.

    Google Scholar 

  • Dungarwal, H.S., Mathur, P.N. and Singh, H.G. (1974) Effect of foliar sprays of sulphuric acid with and without elemental sulphur in the prevention of chlorosis in peanut (Arachis hypogaea L.). Communications in Soil Science Plant Analysis, 5(4), 331–339.

    Article  CAS  Google Scholar 

  • Dwivedi, R.S., Joshi, Y.C., Shara, S.N. et al. (1987) Modeling of peanut (Arachis hypogaea L.) for higher yield on phosphorus deficient soil. Oléagineux, 42, 165–168.

    Google Scholar 

  • Filonow, A.B., Melouk, H.A., Martin, M. and Sherwood, J. (1988) Effect of calcium sulphate on pod rot of peanut. Plant Disease, 72, 589–593.

    Article  CAS  Google Scholar 

  • Foster, H.L. (1980) The influence of soil fertility on crop performance in Uganda. II. Groundnuts. Tropical Agriculture (Trinidad), 57, 29–42.

    CAS  Google Scholar 

  • Gaines, T.P., Parker, M.B. and Walker, M.E. (1989) Runner and Virginia type peanut response to gypsum in relation to soil calcium level. Peanut Science, 16, 116–118.

    Article  Google Scholar 

  • Ganesan, S. and Sundararajan, S.R. (1972) Studies on the effect of boron on the bunch groundnut in Parambikulam Alivar Project Region in Tamil Nadu. Madras Agricultural Journal, 59(5), 308.

    Google Scholar 

  • Garren K.H.(1964) Landplaster and soil rot of peanut pods in Virginia. Plant Disease Reporter, 48, 349–352.

    Google Scholar 

  • Gascho, G.J. (1992) Groundnut (Peanut), Chapter 5.2 in (IFA World Fertilizer Use Manual, eds D.J. Halliday, M.E. Trenkel and W. Wichmann), International Fertilizer Industry Association, Paris.

    Google Scholar 

  • Gascho, G.J. and Alva, A.K. (1990) Beneficial effects of gypsum for peanuts. Proceedings Third International Symposium on Phosphogypsum, Vol. 1, pp. 376–393. Florida Institute of Phosphate Research, Miami, FL.

    Google Scholar 

  • Gascho, G.J., Gaines, T.P. and Plank, C.O. (1990) Comparison of extractants for testing coastal plain soils. Communications in Soil Science and Plant Analysis, 21, 1051–1077.

    Article  CAS  Google Scholar 

  • Gascho, G.J., Guerke, W.R., Parker, M.B. and Gaines, T.P. (1992) Peanut germination related to potassium, calcium, and magnesium in seed, hulls and soils. Proceedings of the American Peanut Research and Education Society, 24, 33.

    Google Scholar 

  • Gascho, G.J., and Hodges, S.C. (1991) Limestone and gypsum as sources of calcium for peanuts. 1990 Peanut Research-Extension Report, pp. 61–64, University of Georgia, Coastal Plain Experiment Station, Tifton, GA.

    Google Scholar 

  • Gascho, G.J., Hodges, S.C., Alva, A.K. et al. (1993) Calcium source and time of application for runner and Virginia peanut. Peanut Science, 11 (in press).

    Google Scholar 

  • Gillier, P. and Silvestre, P. (1969) Fertilization, in L’Arachide. G.P. Masonneuve et Larose, Paris.

    Google Scholar 

  • Golakiya, B.A. (1989) In search of compromisation between calcium boron antagonism in the groundnut crop. Journal of the Maharashtra Agricultural University, 14(1), 123.

    Google Scholar 

  • Golakiya, B.A. and Patel, M.S. (1986) Effect of calcium carbonate and boron on yield of groundnut. Indian Journal of Agricultural Science, 56(1), 41–44.

    CAS  Google Scholar 

  • Goldsworthy, P.R. and Heathcote, K. (1963) Fertilizer trials with groundnuts in northern Nigeria. Empire Journal of Experimental Agriculture, 31, 351–365.

    Google Scholar 

  • Gopal, N.H. (1968) Boron deficiency in groundnut (Arachis hypogaea L.). Indian Journal of Agricultural Science, 38(5), 832–834.

    Google Scholar 

  • Gopal, N.H. (1969) Effect of boron toxicity on iron, heme enzymes and boron-protein complexes in groundnut. Indian Journal of Experimental Biology, 7(3), 187–189.

    CAS  Google Scholar 

  • Gopal, N.H. (1970a) Antagonistic action of boron on copper in groundnut plant. Current Science, 39(2), 44–45.

    CAS  Google Scholar 

  • Gopal, N.H. (1970b) Studies on recovery of groundnut plants from boron injury. Turrialba, 20, 198–203.

    Google Scholar 

  • Gopal, N.H. (1971a) Influence of boron on the growth and yield in groundnut. Turrialba, 21, 435–441.

    CAS  Google Scholar 

  • Gopal, N.H. (1971b) Effect of excess boron supply on accumulation of boron and nitrogen metabolism in groundnut plants. Proceedings of the Indian Academy of Sciences, B73(4), 192–201.

    Google Scholar 

  • Gopal, N.H. (1975) Physiological studies on groundnut plants with boron toxicity. III. Effect on chlorophyll, iron and copper metabolism chlorosis. Turrialba, 25(3), 30–315.

    Google Scholar 

  • Gopal, N.H. and Rao, I.M. (1972) Some agro-physiological aspects of boron nutrition in an Indian variety of groundnut. Current Science, 41(19), 695–698.

    Google Scholar 

  • Graham, R. (1979) The groundnut — (Arachis hypogaea L.). Extension Newsletter —Department of Agricultural Extension, University of the West Indies (Trinidad & Tobago), 10(2), 4–6.

    Google Scholar 

  • Haggin, J. and Koyumjisky, H. (1966) Effects of potassium fertilizers on peanuts in Israel. Experimental Agriculture, 2, 295–298.

    Article  Google Scholar 

  • Hago, T.M. and Salama, M.A. (1987) The effects of elemental sulphur on shoot dry weight, nodulation and pod yield of groundnut under irrigation. Experimental Agriculture, 23, 93–97.

    Article  CAS  Google Scholar 

  • Hallock, D.L. (1964) Effect of some chelated nutrients on peanut yield and seed size. 42nd Annual Meeting, Virginia Academy of Sciences, Charlottesville, VA, May 6–9, 1964.

    Google Scholar 

  • Hallock, D.L. (1966) Boron deficiency (hollow heart) in large seeded Virginia type peanuts. Virginia Academy of Science 17 N.S. (4), 243, Proceedings for the Year 1965–1966, Minutes of the 14th Annual Meeting. May 4–7, 1966, Madison College.

    Google Scholar 

  • Hallock, D.L. (1979) Relative effectiveness of several Mn sources on Virginia-type peanuts. Agronomy Journal, 71, 685–688.

    Article  CAS  Google Scholar 

  • Hallock, D.L. and Allison, A.H. (1980) Effect of three Ca sources applied on peanuts. I. Productivity and seed quality. Peanut Science, 7, 19–25.

    Article  CAS  Google Scholar 

  • Hallock, D.L. and Garren, K.H. (1968) Pod breakdown, yield, and grade of Virginia type peanuts as affected by Ca, Mg, and K sulphates. Agronomy Journal, 60, 253–257.

    Article  CAS  Google Scholar 

  • Hanlon, E.A. and Johnson, G.V. (1984) Bray/Kurtz, Mehlich 3, AB/D and ammonium acetate extractions of P, K, and Mg in four Oklahoma soils. Communications in Soil Science and Plant Analysis, 15, 211–294.

    Article  Google Scholar 

  • Harigopal, N. and Rao, I.M. (1964) Physiological studies on boron toxicity in groundnut (Arachis hypogaea). The Andhra Agricultural Journal, 11(4), 144–152.

    CAS  Google Scholar 

  • Harigopal, N. and Rao, I.M. (1967) Agro-physiological studies on groundnut (Arachis hypogaea Linn.) with boron toxicity. The Andhra Agricultural Journal, 14(1), 12–20.

    Google Scholar 

  • Harris, H.C. (1952) Effect of minor elements, particularly copper, on peanuts. University of Florida Agricultural Experiment Station Bulletin 494.

    Google Scholar 

  • Harris, H.C. (1959) Research on peanuts during the last twenty years. Soil and Crop Science Society of Florida Proceedings, 19, 208–226.

    CAS  Google Scholar 

  • Harris, H.C. (1963) Symptoms of nutritional deficiencies in plants. Proceedings of Soil and Crop Science Society of Florida, 23, 139–152.

    CAS  Google Scholar 

  • Harris, H.C. (1965) Nutrition and physiology of the peanut. Florida Agricultural Experiment Station Annual Report, p. 53.

    Google Scholar 

  • Harris, H.C. (1968) Calcium and boron effects on Florida peanuts. University of Florida Agricultural Experiment Station Bulletin 723, 18 pp.

    Google Scholar 

  • Harris, H.C. and Brolmann, J.B. (1966a). Effect of imbalance of boron nutrition on the peanut. Agronomy Journal, 58(1), 97–99.

    Article  Google Scholar 

  • Harris, H.C. and Brolmann, J.B. (1966b) Comparison of calcium and boron deficiencies of the peanut. I. Physiological and yield differences. Agronomy Journal, 58, 575–578.

    Article  CAS  Google Scholar 

  • Harris, H.C. and Brolmann, J.B. (1966c) Comparison of calcium and boron deficiencies in peanuts. II. Seed quality in relation to histology and viability. Agronomy Journal, 58, 578–582.

    Article  CAS  Google Scholar 

  • Harris, H.C. and Gilman, R.L. (1957) Effect of boron on peanuts. Soil Science, 84, 233–242.

    Article  CAS  Google Scholar 

  • Hartzog, D. and Adams, F. (1968) Soil fertility experiments with peanuts in 1967. Auburn University Agricultural Experiment Station Progress Report Series No. 89.

    Google Scholar 

  • Hartzog, D. and Adams, F. (1971) Soil fertility experiments with peanuts in 1970. Auburn University Agricultural Experiment Station Progress Report Series No. 94.

    Google Scholar 

  • Hartzog, D.L. and Adams, F. (1973a) Fertilizer, gypsum, and lime experiments with peanuts in Alabama. Alabama Agricultural Experiment Station Bulletin 448.

    Google Scholar 

  • Hartzog, D. and Adams, F. (1973b) Soil fertility experiments with peanuts in 1972. Auburn University Agricultural Experiment Station Progress Report Series No. 101.

    Google Scholar 

  • Hartzog, D.L. and Adams, F. (1988a) Relation between soil test P and K and yield response of runner peanuts to fertilizer. Communications in Soil Science and Plant Analysis, 19, 1645–1653.

    Article  CAS  Google Scholar 

  • Hartzog, D.L. and Adams, J.F. (1988b) Soil fertility experiments with peanuts in Alabama, 1973–1986. Alabama Agricultural Experiment Station Bulletin 594, Auburn University, AL.

    Google Scholar 

  • Hartzook, A., Eichman M. and Karstadt, D. (1971) The treatment of iron deficiency in peanuts cultivated in basic and calcareous soils. Oléagineux, 26(6), 391–395.

    Google Scholar 

  • Hartzook, A., Karstadt, D., Naveh, M. and Feldman, S. (1974a) Differential iron absorption efficiency of peanut (Arachis hypogaea L.) cultivars grown on calcareous soils. Agronomy Journal, 66, 114–115.

    Article  Google Scholar 

  • Hartzook, A., Karstadt, D., Naveh, M. and Sander, N. (1974b) Groundnut (Arachis hypogaea L). cultivars for cultivation on calcareous soils. Plant and Soil, 41, 685–688.

    Article  Google Scholar 

  • Heathcote, R.G. (1972) Potassium fertilization in the Savannah zone of Nigeria. Potash Review, 16, 57.

    Google Scholar 

  • Heinis, J.L. (1972) Methionine content of 25 peanut selections, and effect of molybdenum on methionine and nitrogen in peanut plants. Oléagineux, 27(3), 147–152.

    CAS  Google Scholar 

  • Hickey, J.M., Robertson, W.K., Hubbell, D.H. and Whitty, E.B. (1974) Inoculation, liming, and fertilization of peanuts on Lakeland fine sand. Soil and Crop Science Society of Florida Proceedings, 33, 218–222.

    Google Scholar 

  • Hill, W.E. and Morrill, L.G. (1974) Assessing boron needs for improving peanut yield and quality. Soil Science Society America Proceedings, 38, 791–794.

    Article  CAS  Google Scholar 

  • Hill, W.E. and Morrill, L.G. (1975) Boron, calcium, and potassium interactions in Spanish peanuts. Soil Science Society America Proceedings, 39, 80–83.

    Article  CAS  Google Scholar 

  • Hiltbold, A.E., Hartzog, D.L., Harrison, R.B. and Adams, F. (1983) Inoculation of peanuts in farmer’s fields in Alabama. Peanut Science, 10, 79–82.

    Article  Google Scholar 

  • Hodges, S.C., Gascho, G.J. and Kidder, G. (1994) Calcium, in Research-based soil testing interpretation and fertilizer recommendations for peanuts on coastal plain soils, (ed. C.C. Mitchell), Southern Cooperative Series Bulletin (in press).

    Google Scholar 

  • Jadhao, P.N., Fulzele, G.R., Bhalerao, P.D. and Thorne, P.V. (1989) Response of peanut to boron application under shallow soils. Annals of Plant Physiology, 3(1), 44–48.

    Google Scholar 

  • Kafkafi, V. and Neumann, R.G. (1985) Correction of iron chlorosis in peanut (Arachis hypogaea Shulamit) by ammonium sulphate and nitrification inhibitor. Journal of Plant Nutrition, 8(4), 303–309.

    Article  CAS  Google Scholar 

  • Katawatin, R., Ruaysoongnern, S., Keerati-Kasikorn, P. et al. (1989) Effect of phosphorus and copper application on copper uptake by peanut. Khon Kaen Agriculture Journal, 17(6), 373–380.

    Google Scholar 

  • Kayode, G.O. (1987) Potassium requirement of groundnut (Arachis hypogaea) in the lowland tropics. Journal of Agricultural Science, 108, 643–647.

    Article  Google Scholar 

  • Keisling, T.C., Lauer, D.A., Walker, M.E. and Henning, R.J. (1977) Visual tissue, and soil factors associated with Zn toxicity of peanuts. Agronomy Journal, 69, 765–769.

    Article  CAS  Google Scholar 

  • Kene, D.R., Pathey, M.K. and Thakare, K.K. (1988) Effect of graded levels of nitrogen and molybdenum on root nodulation and nitrogen fixation by Rhizobium in groundnut grown in Vertisol. PKV Research Journal, 12(2), 155–157.

    Google Scholar 

  • Kernick, M.D. (1961) in Agricultural and Horticultural Seeds, FAO, United Nations, Rome, pp. 345–348.

    Google Scholar 

  • Kiat, T.B. (1979). The influence of soil reaction (pH) and molybdenum on yield and nutrient uptake by peanuts (Arachis hypogaea) and red clover (Trifolium pratense). Thesis, Louisiana State University.

    Google Scholar 

  • Kvien, C.S., Branch, W.D., Sumner, M.E. and Csinos, A.S. (1988) Genotypic factors influencing calcium concentrations in the seed and hull of peanut (Arachis hypogaea L.). Crop Science, 28, 666–671.

    Article  Google Scholar 

  • Kvien, C.S., Weaver, R.W. and Pallas, J.E. (1986) Mobilization of nitrogen-15 from vegetative to reproductive tissue of peanut. Agronomy Journal, 78, 954–958.

    Article  CAS  Google Scholar 

  • Lachover, D. and Ebercon, A. (1971) Iron deficiency problems in peanuts under irrigation. World Crops, July/August, 1971, 202–204.

    Google Scholar 

  • Lachover, D. and Ebercon, A. (1972a) Iron chlorosis in peanuts on a calcareous Jordan Valley soil. Experimental Agriculture, 8, 241–250.

    Article  CAS  Google Scholar 

  • Lachover, D. and Ebercon, A. (1972b) The suitability of different physical forms of the chelate Sequestrene 138 for correcting iron-induced chlorosis in peanuts. Oléagineux, 27(4), 205–209.

    CAS  Google Scholar 

  • Lachover, D., Fichman, M. and Hartzook, A. (1970) The use of iron chelate to correct chlorosis in peanuts under field conditions. Oléagineux, 25(2), 85–88.

    CAS  Google Scholar 

  • Lakshminarasimhan, C.R., Andi, K and Surendran, R. (1977) Effect of zinc fertilisation for groundnut. Oils and Oilseeds Journal, 29(3), 13.

    CAS  Google Scholar 

  • Lai, R., and Saran, G. (1988) Influence of nitrogen and phosphorus on yield and quality of groundnut under irrigated conditions. Indian Journal of Agronomy, 33, 460.

    Google Scholar 

  • Lauter, D.J., Meiri, A. and Yermiyahu, V. (1989) Tolerance of peanut to excess boron. Plant and Soil, 114, 35–38.

    Article  CAS  Google Scholar 

  • Longanathan, S. and Krishnamoorthy, K.K. (1977) Total uptake of nutrients at different stages of the growth of groundnut and the ratios in which various nutrient elements exist in groundnut plant. Plant and Soil, 46, 565–570.

    Article  Google Scholar 

  • Luke, J.F. (1969) Residual effects of high rates of fertilizer boron on a Norfolk sandy loam. MS Thesis, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Lund, Z.F. and Murdock, L.W. (1978) Effects of sulphur on early growth of plants. Sulphur Agriculture, 2, 6–8.

    CAS  Google Scholar 

  • Lynd, J.Q. and Ansman, T.R. (1989) Effects of phosphorus and calcium with four levels of potassium on nodule histology, nitrogenase activity, and improved ‘Spanco’ peanut yields. Journal of Plant Nutrition, 12, 65–84.

    Article  CAS  Google Scholar 

  • Mali, A.L., Verma, R.R., Rathope, P.S. and Sharme, H. (1988) Nutrient uptake in groundnut as influenced by dates of planting and phosphorus and nitrogen application. Madras Agricultural Journal, 75, 356–358.

    Google Scholar 

  • Maliwal, G.L. and Tank, N.K. (1988) Effect of phosphorus in the presence and absence of sulphur and magnesium on yield and uptake of P, S, and Mg by Gaug-10 (Arachis hypogaea). Indian Journal of Agricultural Science, 58, 557–560.

    Google Scholar 

  • McGill, J.F. and Bergeaux, P.J. (1966) Boron for peanuts. University of Georgia, College of Agriculture, Cooperative Extension Service, Peanut Release No.49.

    Google Scholar 

  • Mengel, K. and Kirkby, E.A. (1982) Principles of plant nutrition. Potash Institute, Berne, Switzerland.

    Google Scholar 

  • Mitchell, C.C. and Adams, J.F. (1994) Phosphorus and potassium, in Research-based soil test interpretation and fertilizer recommendations for peanuts on coastal plain soils, (ed. C.C. Mitchell), Southern Cooperative Series Bulletin (in press).

    Google Scholar 

  • Mizuno, S. (1959) Physiological studies on the fruitification of peanut. I. Distribution of radioactive calcium administered to the fruiting zone on the fruiting organ. Proceedings of the Crop Science Society of Japan, 28, 83–85 (Japanese-English Summary).

    Article  Google Scholar 

  • Morrill, L.G., Hill, W.E., Chrudimsky, W.W. et al. (1977) Boron requirements of Spanish peanuts in Oklahoma: Effects on yield and quality and interaction with other nutrients.Oklahoma State University Report No. MNP-99, 20 pp.

    Google Scholar 

  • Morris, H.D., and Pierre, W.H. (1949) Minimum concentrations of manganese necessary for injury to various legumes in culture solutions. Agronomy Journal, 41, 107–112.

    Article  CAS  Google Scholar 

  • Mupawose, R.M. (1978) Yield improvement in maize, rice and groundnuts grown on Chisumbanje basalt soils using zinc foliar sprays. Rhodesia Agricultural Journal, 75(2), 37–40.

    Google Scholar 

  • Muthuswamy, T.D. and Sundararajan, S.R. (1973) Effect of boron on bunch groundnut. Madras Agricultural Journal, 60(6), 403.

    Google Scholar 

  • Nambiar, P.T.C. and Anjaiah, V. (1989) Effect of manganese toxicity on growth and N2 fixation in groundnut, Arachis hypogaea. Annals of Applied Biology, 115, 361–366.

    Article  CAS  Google Scholar 

  • Nicholaides, J.J., and Cox, F.R. (1970) Effect of mineral nutrition on chemical composition and early reproducetive development of Virginia type peanuts (Arachis hypogaea L.). Agronomy Journal, 62, 262–265.

    Article  CAS  Google Scholar 

  • Papastylianou, I. (1989) Effect of selected soil factors on chlorosis of peanuts grown in calcareous soils in Cyprus. Plant and Soil, 117, 291–294.

    Article  CAS  Google Scholar 

  • Parker, M.B. (1964) Molybdenum in Micronutrients and Crop Production in Georgia, (ed. R.L. Carter) University of Georgia Agricultural Experiment Stations Bulletin N.S. 126, pp. 42–52.

    Google Scholar 

  • Parker, M.B., Gaines, T.P., Walker, M.E. et al. (1990) Soil zinc and pH effects on leaf zinc and the interaction of leaf calcium and zinc on zinc toxicity of peanuts. Communications in Soil Science and Plant Analysis, 21, 2319–2332.

    Article  CAS  Google Scholar 

  • Parker, M.B., Gascho, G.J. and Gaines, T.P. (1983) Chloride toxicity of soybeans grown on Atlantic Coast Flatwoods Soils. Agronomy Journal, 75, 439–443.

    Article  CAS  Google Scholar 

  • Parker, M.B. and Walker, M.E. (1986) Soil pH and manganese effects on manganese nutrition of peanut. Agronomy Journal, 78, 614–620.

    Article  CAS  Google Scholar 

  • Parker, M.B., Walker, M.E. and Gaines, T.P. (1984), personal communication.

    Google Scholar 

  • Patel, J.C., Vyas, M.N. and Malavia, D.D. (1988) Response of summer groundnut to irrigation under varying levels of nitrogen and phosphorus. Indian Journal of Agronomy, 33, 56–59.

    Google Scholar 

  • Patil, V.C., Radder, G.D. and Kudasomannavar, B.T. (1979) Effect of zinc, iron and calcium under varying levels of phosphorus on groundnut. Mysore Journal of Agricultural Sciences, 13, 395–399.

    Google Scholar 

  • Perkins, H.F. (1964) Iron, in Micronutrients and Crop Production in Georgia, (ed. R.L. Carter) University of Georgia College of Agriculture Bulletin N.S. 126, pp. 29–32.

    Google Scholar 

  • Perry, Astor. (1971) Boron — Peanuts’ ‘Big’ Minor Element. The Progressive Farmer, May 1971, p. 6.

    Google Scholar 

  • Phillips, T.D., Wynne, J.C., Elkan, G.H. and Schneeweis, T.J. (1989) Inheritance of symbiotic nitrogen fixation in two peanut crosses. Peanut Science, 16, 66–70.

    Article  Google Scholar 

  • Piggot, C.J. 1960. The effect of fertilizers on the yield and quality of groundnuts in Sierra Leone. Empire Journal of Experimental Agriculture, 28, 59–64.

    Google Scholar 

  • Plank, C.O. (1989a) Soil test handbook for Georgia. Georgia Cooperative Extension Service, University of Georgia, Athens, GA.

    Google Scholar 

  • Plank, C.O.(1989b) Plant analysis handbook for Georgia. Georgia Cooperative Extension Service, University of Georgia, Athens, GA.

    Google Scholar 

  • Quintana, R.U. (1972) Zinc studies in peanuts (Arachis hypogaea L.). PhD Thesis, Texas A & M University, Dissertation Abstracts International, 32(8), 4357B.

    Google Scholar 

  • Rao, V.L., Narasimha, Krishna Murty, K.M. and Rao, M.P. Narasimha (1960) Groundnut — its response to applications of nitrogen, phosphorus, potassium, boron and molybdenum. Second Conference of Oil Seeds Research Workers in Madras, India.

    Google Scholar 

  • Rao, J.K., Sahrawat, K.L. and Burford, J.R. (1987) Diagnosis of iron deficiency in groundnut, Arachis hypogaea L. Plant and Soil, 97, 353–359.

    Article  CAS  Google Scholar 

  • Reddy, S.C.S. and Patil, S.V. (1980) Effect of calcium and sulphur and certain minor nutrient elements on the growth, yield and quality of groundnut (Arachis hypogaea L.). Oléagineux, 35(11), 507–510.

    CAS  Google Scholar 

  • Reid, P.H. and Cox, F.R. (1973) Soil properties, mineral nutrition and fertilization practices, in Peanuts, Culture and Uses. American Peanut Research and Education Association, Oklahoma State University, Stillwater.

    Google Scholar 

  • Reid, P.H. and York, E.T., Jr (1958) Effect of nutrient deficiencies on growth and fruiting characteristics of peanuts in sand cultures. Agronomy Journal, 50, 63–67.

    Article  CAS  Google Scholar 

  • Rhoads, F.M., Shokes, F.M. and Gorbet, G.W. (1989) Response of two peanut cultivars to soil zinc levels, University of Florida, Institute of Food and Agricultural Sciences, Research Report NF-89-2.

    Google Scholar 

  • Rhoads, F.M., Shokes, F.M. and Gorbet, D.W. (1991a) Dolomite and zinc interactions in two peanut cultivars. University of Florida, North Florida Research and Education Center Research Report 91–6.

    Google Scholar 

  • Rhoads, F.M., Shokes, F.M. and Gorbet, G.W. (1991b) Response of Southern Runner peanuts to lime, gypsum, and zinc. University of Florida, North Florida Research and Education Center Research Report 91–7.

    Google Scholar 

  • Rich, C.I. (1956) Manganese content of peanut leaves as related to soil factors. Soil Science, 82, 353–363.

    Article  CAS  Google Scholar 

  • Sahu, M.P. and Singh, H.G. (1987) Effect of sulphur on prevention of iron chlorosis and plant composition of groundnut on alkaline calcareous soils. Journal of Agricultural Science, 109, 73–77.

    Article  CAS  Google Scholar 

  • Sankaran, N., Sennaian, P. and Morachan, Y.B. (1977) Effects of forms and levels of calcium and levels of boron on the uptake of nutrients and quality of groundnut. Madras Agricultural Journal, 64(6), 384–388.

    CAS  Google Scholar 

  • Saxena, H.K. and Mehrotra, O.N. (1985) Effect of boron and molybdenum in presence of phosphorus and calcium on groundnut. Indian Journal of Agricultural Research, 19, 11–14.

    CAS  Google Scholar 

  • Scarsbrook, C.E. and Cope, J.T. (1956) Fertility requirements of runner peanuts in southeast Alabama. Alabama Experiment Station Bulletin, 302.

    Google Scholar 

  • Schilling, R. and Hirsch, P.J. (1974) Chlorine nutrition of peanuts in Senegal. Oléagineux, 29, 85–90.

    Google Scholar 

  • Schmidt, J.P. and Cox, F.R. (1992) Evaluation of the magnesium soil test interpretation for peanuts. Peanut Science, 19, 126–131.

    Article  CAS  Google Scholar 

  • Schneider, R.P. and Anderson, W.B. (1972) Micronutrient nutrition of Spanish peanuts. Association of Southern Agricultural Workers, Inc., 69th Annual Convention. Richmond, Virginia, Feb. 13–16, 1972.

    Google Scholar 

  • Sellschop, J.P.F. (1967) Groundnuts — all aspects of cultivation. Farming in South Africa, February 1967, pp. 3–19.

    Google Scholar 

  • Shiralipour, Aziz, Harris, H.C. and West, S.H. (1969) Boron deficiency and amino acid and protein contents of peanut leaves. Crop Science, 9, 455–456.

    Article  CAS  Google Scholar 

  • Smal H., Sumner, M.E., Csinos, A.S. and Kvien, C.S. (1988) On the calcium nutrition of peanut (Arachis hypogaea L.). Journal of Fertilizer Issues, 5, 103–108.

    Google Scholar 

  • Smal H., Kvien, C.S., Sumner, M.E. and Csinos, A.S. (1989) Solution calcium concentration and application date effects on pod calcium uptake and distribution in Florunner and Tifton-8 peanut. Journal of Plant Nutrition, 12, 37–52.

    Article  CAS  Google Scholar 

  • Snyman, J.W. (1972) Nutritional studies with a spanish-type groundnut on an Avalon medium sandy loam soil. PhD dissertation, University of Natal, Pietermaritzburg, South Africa (from Blarney et al., 1981).

    Google Scholar 

  • Sridhar, V., Soundararajan, M.S., Sudakara Rao, R. and Sreeramulu, C. (1985) Response of JL-24 groundnut to rates, times and methods of gypsum application. Madras Agricultural Journal, 72, 47–53.

    Google Scholar 

  • Stoller, E.W. (1966) The effect of boron nutrition on growth and protein and nucleic acid metabolism in peanut plants. PhD Thesis, North Carolina State University, Dissertation Abstracts, 27(6), 1697B.

    Google Scholar 

  • Sumner, M.E., Kvien, C.S., Smal, H. and Csinos, A.S. (1988) On the calcium nutrition of peanut (Arachis hypogaea L.). I. Operational model. Journal of Fertilizer Issues, 5, 97–102.

    Google Scholar 

  • Survanvesh, T. and Morrill, L.G. (1986) Foliar application of phosphorus to Spanish peanuts. Agronomy Journal, 78, 54–58.

    Article  Google Scholar 

  • Swamy, N.R. and Reddy, P.R. (1983) Influence of growth regulator and nutrients on the quality of groundnut (Arachis hypogaea L.). Madras Agricultural Journal, 70(11), 740–745.

    Google Scholar 

  • Terry, R.E., Hartzook, A., Jolley, V.D. and Brown, J.C (1988) Interactions of iron nutrition and symbiotic nitrogen fixation in peanuts. Journal of Plant Nutrition, 11, 811–820.

    Article  CAS  Google Scholar 

  • Walker, M.E. (1967) Optimum rates of plant nutrients for peanut fertilization are shown, in Serving Georgia through Research, University of Georgia, Agricultural Experiment Stations Annual Report, pp. 18–19.

    Google Scholar 

  • Walker, M.E., Branch, W.D., Gaines, T.P. and Mullinix, B.G., Jr (1984) Response of nodulating and nonnodulating peanuts to foliarly applied nitrogen. Peanut Science, 11, 60–63.

    Article  CAS  Google Scholar 

  • Walker, M.E. and Csinos, A.S. (1980) Effect of gypsum on the yield, grade and incidence of pod rot in five peanut cultivars. Peanut Science, 7, 109–113.

    Article  Google Scholar 

  • Walker, M.E., Flowers, R.A., Henning, R.J. et al. (1979) Response of early bunch peanuts to calcium and potassium fertilization. Peanut Science, 6, 119–123.

    Article  CAS  Google Scholar 

  • Walker, M.E., Gaines, T.P. and Henning, R.J. (1982) Foliar fertilization effects on yield, quality, nutrient uptake, and vegetative characteristics of Florunner peanuts. Peanut Science, 9, 53–57.

    Article  Google Scholar 

  • Walker M.E., Gaines, T.P. and Parker, M.B. (1989) Potassium, magnesium, and irrigation effects on peanuts grown on two soils. Communications in Soil Science and Plant Analysis, 20, 1011–1032.

    Article  CAS  Google Scholar 

  • Walker, M.E. and Keisling, T.C. (1978) Response of five cultivars to gypsum fertilization on soils varying in calcium content. Peanut Science, 5, 57–60.

    Article  Google Scholar 

  • Walker, M.E., Keisling, T.C. and Drexler, J.S. (1976) Response of three peanut cultivars to gypsum. Agronomy Journal, 68, 527–528.

    Article  CAS  Google Scholar 

  • Welch, L.F. and Anderson, O.E. (1962). Molybdenum content of peanut leaves and kernels as affected by soil pH and added molybdenum. Agronomy Journal, 54, 215–217.

    Article  CAS  Google Scholar 

  • Wiersum, L.K. (1951) Water transport in the xylem as related to calcium uptake by groundnuts. (Arachis hypogaea L.). Plant and Soil, 3, 160–169.

    Article  CAS  Google Scholar 

  • Wilson, D.M., Walker, M.E. and Gascho, G.J. (1989) Some effects of mineral nutrition on aflatoxin contamination of corn and peanuts, in Management of Diseases with Macro- and Microelements, (ed. A.W. Engelhard) APS Press, St. Paul, MN.

    Google Scholar 

  • Wolt, J.D., and Adams, F. (1979) Critical levels of soil- and nutrient solution-calcium for vegetative growth and fruit development of Florunner peanuts. Soil Science Society America Journal, 43, 1159–1164.

    Article  CAS  Google Scholar 

  • York, E.T., Jr and Colwell, W.E.(1951) Soil properties, fertilization, and maintenance of soil fertility, Chapter V in The Peanut — The Unpredictable Legume, National Fertilizer Association, Washington, DC, pp. 122–172.

    Google Scholar 

  • Zaharieva, T. (1986) Comparative studies of iron inefficient plant with plant analysis. Journal of Plant Nutrition, 9, 939–946.

    Article  Google Scholar 

  • Zaharieva, T., Kasabov, D. and Römheld, V. (1988) Responses of peanuts to iron—manganese interaction in calcareous soil. Journal of Plant Nutrition, 11:1015–1024.

    Article  Google Scholar 

  • Zhang, J., Zhang, D., Jaing, Z and Liu, C. (1986) Boron nutrition and application of boron fertilizer to peanut crop. Turang Tongbao, 17, 173–176.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gascho, G.J., Davis, J.G. (1994). Mineral nutrition. In: Smartt, J. (eds) The Groundnut Crop. World Crop Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0733-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0733-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4315-1

  • Online ISBN: 978-94-011-0733-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics