Skip to main content

Bound Entanglement for Continuous Variables is a Rare Phenomenon

  • Chapter
Quantum Information with Continuous Variables

Abstract

We discuss the notion of bound entanglement (BE) for continuous variables (CV). We show that the set of non-distillable states (NDS) for CV is nowhere dense in the set of all states, i.e., the states of infinite-dimensional bipartite systems are generically distillable. This automatically implies that the sets of separable states, entangled states with positive partial transpose, and bound entangled states are also nowhere dense in the set of all states. All these properties significantly distinguish quantum CV systems from the spin like ones. The aspects of the definition of BE for CV is also analysed, especially in context of Schmidt numbers theory. In particular the main result is generalised by means of arbitrary Schmidt number and single copy regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

    Article  ADS  Google Scholar 

  3. P. Horodecki, M. Horodecki and R. Horodecki, Phys. Rev. Lett. 82, 1046 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Murao, V. Vedral, Phys. Rev. Lett. 86, 352 (2001); P. W. Shor, J. A. Smolin, and A. V. Thapliyal, quant-ph/0005117.

    Article  ADS  Google Scholar 

  5. W. Dür, J. I. Cirac, and R. Tarrach, Phys. Rev. Lett. 83, 3562 (1999)

    Article  ADS  Google Scholar 

  6. W. Dür and J. I. Cirac, Phys. Rev. A 62, 22302 (2000).

    Article  Google Scholar 

  7. See S. Braunstein and J. Kimble, quant-ph/9910010, and references therein; for experiments see A. Furusawa et al. Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  8. P. Horodecki and M. Lewenstein, Phys. Rev. Lett. 85, 2657 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  9. R. F. Werner and M. M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).

    Article  ADS  Google Scholar 

  10. K. Życzkowski, P. Horodecki, A. Sanpera and M. Lewenstein, Phys. Rev. A 58 833 (1998)

    Google Scholar 

  11. K. Życzkowski, Phys. Rev. A 60 3496 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Vidal, R. Tarrach, Phys. Rev. A 59 141 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  13. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu and R. Schack: Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  14. R. Schack and C. M. Caves, Phys. Rev. A 60, 4354 (1999).

    Article  ADS  Google Scholar 

  15. N. Linden and S. Popescu, Phys. Rev. Lett. 87, 047901 (2001).

    Article  ADS  Google Scholar 

  16. R. Clifton and H. Halvorson, Phys. Rev. A 61, 012108 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  17. B. M. Terhal and P. Horodecki, Phys. Rev. A 61, 040301(R) (2000).

    MathSciNet  ADS  Google Scholar 

  18. M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4026 (1999).

    MathSciNet  Google Scholar 

  19. M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. A 60, 1888 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  20. R. V. Kadison and J. R. Ringrose, “Fundamentals of the Theory of Operator Algebras”, Academic Press, (1983).

    Google Scholar 

  21. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  ADS  Google Scholar 

  23. R. Simon, Phys. Rev. Lett. 84 2726 (2000).

    Article  ADS  Google Scholar 

  24. G. Giedke,, L. M. Duan, J. I. Cirac, and P. Zoller, quant-ph/0007061.

    Google Scholar 

  25. M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 2261 (1998)

    Article  ADS  Google Scholar 

  26. A. Sanpera, R. Tarrach and G. Vidal, Phys. Rev. A 58, 826 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein, Phys. Rev. A 61, 062302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. P. Horodecki, M. Lewenstein, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 032310 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys. Rev. 62, 052310 (2000).

    Article  ADS  Google Scholar 

  30. M. Lewenstein, B. Kraus, P. Horodecki, and J. I. Cirac, Phys. Rev. 63, 044304 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  31. G. Giedke, B. Kraus, M. Lewenstein and J. I. Cirac, Phys. Rev. A 64, 052303 (2001).

    Article  ADS  Google Scholar 

  32. G. Giedke, B. Kraus, M. Lewenstein and J. I. Cirac, Phys. Rev. Lett. 87, 167904 (2001).

    Article  ADS  Google Scholar 

  33. G. Giedke, L.-M. Duan, J. I. Cirac and P. Zoller, Quant. Inf. Comp. 1(3), 79 (2001).

    MathSciNet  MATH  Google Scholar 

  34. D.P. DiVincenzo, P. W. Shor, J. A. Smolin, B. Terhal and A. Thapliyal, Phys. Rev. A, 61 062312 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  35. W. Dür, J. I. Cirac, M. Lewenstein and D. Bruss, Phys. Rev. A 61 062313 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  36. P. W. Shor, J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 86, 2681 (2001).

    Article  ADS  Google Scholar 

  37. L. P. Hughston, R. Jozsa and W. W. Wooters, Phys. Lett. A 183, 14 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Sanpera, D. Bruss, M. Lewenstein, Phys. Rev. A 63, 050301 (R) (2001).

    Article  ADS  Google Scholar 

  39. B. Terhal, Lin. Algebr. Appl. 323, 61 (2000).

    Article  MathSciNet  Google Scholar 

  40. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. N. Cerf, C. Adami, and R. M. Gingrich, Phys. Rev. 60, 898 (1999).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Horodecki, P., Cirac, J.I., Lewenstein, M. (2003). Bound Entanglement for Continuous Variables is a Rare Phenomenon. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics