Skip to main content

Efficient Classical Simulation of Continuous Variable Quantum Information Processes

  • Chapter
Quantum Information with Continuous Variables

Abstract

We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.

S. D. Bartlett, B. C. Sanders, S. L. Braunstein and K. Nemoto, Physical Review Letters 88, 097904/1-4 (2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gottesman, in Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, edited by S. P. Corney et al., (International Press, Cambridge, MA, 1999), p. 32.

    Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000), p. 464.

    MATH  Google Scholar 

  3. E. Knill, quant-ph/0108033; B. M. Terhal and D. P. DiVincenzo, quantph/0108010.

    Google Scholar 

  4. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).

    Article  ADS  Google Scholar 

  5. A. Furusawa et al., Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  6. T. C. Ralph, Phys. Rev. A 61, 010303(R) (2000).

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Hillery, Phys. Rev. A 61, 022309 (2000).

    Article  ADS  Google Scholar 

  8. M. D. Reid, Phys. Rev. A 62, 062308 (2000).

    Article  ADS  Google Scholar 

  9. D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001).

    Article  ADS  Google Scholar 

  10. S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. R. P. Feynman, Found. Phys. 16, 507 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  12. S. L. Braunstein, Phys. Rev. Lett. 80, 4084 (1998).

    Article  ADS  Google Scholar 

  13. S. L. Braunstein, Nature (London) 394, 47 (1998).

    Article  ADS  Google Scholar 

  14. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  15. D. Gottesman et al., Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  16. H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory 26, 78 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. G. J. Milburn and D. F. Walls, Phys. Rev. A 28, 2065 (1983).

    Article  ADS  Google Scholar 

  18. S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65, 042310 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 American Physical Society

About this chapter

Cite this chapter

Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K. (2002). Efficient Classical Simulation of Continuous Variable Quantum Information Processes. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics