Skip to main content

Particle Gun Methodology as a Tool in Metabolic Engineering

  • Chapter
Metabolic Engineering of Plant Secondary Metabolism

Summary

Gene transfer into plants is an essential component of any genetic engineering program. Over the past fifteen years major advances in the genetic engineering of plants focused on major crop species such as cereals, legumes and woody species and model systems such as tobacco, petunia and Arabidopsis. This was a reflection of the focus on fundamental studies in gene expression and regulation using single genes or applied targets using genes of agronomic interest such a herbicide, pest and disease resistance. One of the limitations of available methodology has been the difficulty to introgress multiple genes into plant cells. In addition, transformation of more exotic plant species is not straightforward. With the advent of direct DNA transfer procedures such as particle bombardment, it now becomes possible to embark on the genetic engineering of such plants and also to begin considering introduction of multiple genes into plants, taking advantage of co-transformation experiments. This makes the genetic engineering of multi-step pathways a feasible proposition. In this chapter, we will discuss some of the issues involved in such experiments. We will use tobacco as a model to illustrate advantages of particle bombardment in metabolic pathway engineering and we will also discuss experiments involving additional medicinal plants which are now targets for the genetic engineering of secondary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanford JC, Klein TM, Wolf ED et al. Delivery of substances into cells and tissues using a particle bombardment process. Journal of Particulate Science and Technology 1987; 6: 559–563.

    Google Scholar 

  2. Sanford JC. The Biolistic Process. Trends in Biotech 1988; 6: 299–302.

    Article  CAS  Google Scholar 

  3. Klein TM, Wolf ED, Wu R et al. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987; 327: 70–73.

    Article  CAS  Google Scholar 

  4. Christou P, McCabe DE, Swain,WF. Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol 1988; 87: 671–674.

    Article  PubMed  CAS  Google Scholar 

  5. McCabe DE, Swain WF, Martinell BJ et al. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 1988; 6: 923–926.

    Article  Google Scholar 

  6. Christou P, McCabe DE, Martinell BJ et al. Soybean Genetic Engineering-Commercial production of transgenic plants. Trends in Biotech 1990; 8: 145–151.

    Article  CAS  Google Scholar 

  7. Christou P, Ford T and Kofron M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 1991; 9: 957–962.

    Article  Google Scholar 

  8. McCabe DE and Christou P. Direct DNA transfer using electric discharge particle acceleration (Accell technology). Plant Cell Tissue and Organ Culture 1993; 33: 227–236.

    Article  CAS  Google Scholar 

  9. Wink M. Physiology of secondary product formation in plants. In: Charlwood BV, Rhodes MJC, ( Eds). Claredon Press, 1990: 23–41.

    Google Scholar 

  10. Alfermann AW and Petersen, M. Natural product formation by plant cell biotechnology: results and perspectives. Plant Cell Tissue and Organ Culture 1995; 43: 97–109.

    Article  Google Scholar 

  11. Scragg AH. The problems associated with high biomass levels in plant cell suspensions. Plant Cell Tissue and Organ Culture 1995; 43: 163–170.

    Article  CAS  Google Scholar 

  12. Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell 1995; 7: 1001–1013.

    PubMed  CAS  Google Scholar 

  13. McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell 1995; 7: 1015–1026.

    PubMed  CAS  Google Scholar 

  14. Kutchan T. Alkaloid biosynthesis–the basis for metabolic engineering of medicinal plants. Plant Cell 1995; 7: 1059–1070.

    PubMed  CAS  Google Scholar 

  15. Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995; 7: 1071–1083.

    PubMed  CAS  Google Scholar 

  16. Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7: 1085–1097.

    PubMed  CAS  Google Scholar 

  17. Maldonado-Mendoza IE, Vincent RM, Nessler CL. Molecular characterization of three differentially expressed members of the Camptotheca acuminate 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family. Plant Mol Biol 1997; 34: 781–790.

    Article  PubMed  CAS  Google Scholar 

  18. Facchini PJ, DeLuca V. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 1994; 269: 26684–26690.

    PubMed  CAS  Google Scholar 

  19. Vazquez-Flota F, De Carolis E, Alarco A-M et al. Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol 1997; 34: 935–948.

    Article  CAS  Google Scholar 

  20. Floss HG. Hybrid antibiotics-the contribution of the new gene combinations. TIBTECH 1987; 5: 111–115.

    Article  CAS  Google Scholar 

  21. Yun D-J, Hashimoto T, Yamada Y. Metabolic engineering of medicinal plants: Transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 1992; 89: 11799–11803.

    Article  PubMed  CAS  Google Scholar 

  22. Mol JNM, Holton TA, Koes RE. Floriculture: genetic engineering of commercial traits. TIBTECH 1995; 13: 350–355.

    Article  CAS  Google Scholar 

  23. Hain R, Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 1990; 15: 325–335.

    Article  PubMed  CAS  Google Scholar 

  24. Hain R, Reif H-J, Krause E. et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 1993; 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  25. Siebert M, Sommer S, Li S-m, et al. Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco. Plant Physiol 1996; 112: 811–819.

    Article  PubMed  CAS  Google Scholar 

  26. Zook M, Hohn T, Bonnen A, et al. Characterization of novel sesquiterpenoid biosynthesis in tobacco expressing a fungal sesquiterpene synthase. Plant Physiol 1996; 112: 311–318.

    PubMed  CAS  Google Scholar 

  27. Chappell J, Wolf F, Proulx J, et al. Is the reaction catalysed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isopropenoid biosynthesis in plants? Plant Physiol 1995; 109: 1337–1343.

    PubMed  CAS  Google Scholar 

  28. Harms K, Atzora R, Brash A, et al. Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell 1995; 7: 1645–1654.

    PubMed  CAS  Google Scholar 

  29. Schaller H, Grausem B, Benveniste P, et al. Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase I in tobacco results in sterol overproduction. Plant Physiol 1995; 109: 761–770.

    PubMed  CAS  Google Scholar 

  30. Howles PA, Sewalt VJH, Paiva NL, et al. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol 1996; 112: 1617–1624.

    PubMed  CAS  Google Scholar 

  31. Nessler CL. Metabolic engineering of plant secondary products. Transgenic Res 1994; 3: 109–115.

    Article  PubMed  CAS  Google Scholar 

  32. Goddijn OJM, Pennings EJM, van der Helm, P, et al. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 1995; 4: 315–323.

    Article  PubMed  CAS  Google Scholar 

  33. Stitt M, Sonnewald U. Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Mol Biol 1995; 46: 341–368.

    Article  CAS  Google Scholar 

  34. Facchini PJ, de Luca V. Phloem-specific expression of tryrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell 1995; 7: 1811–1821.

    PubMed  CAS  Google Scholar 

  35. De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of a cDNA encoding a plant tryptophan decarboxylase: Comparison with animal dopa decarboxylase. Proc Natl Acad Sci USA 1989; 86: 2582–2586.

    Article  PubMed  Google Scholar 

  36. McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL: Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucl Acid Res 1990; 18: 4939.

    Article  CAS  Google Scholar 

  37. De Luca V, Cutler AJ. Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 1987; 85: 1099–1102.

    Article  PubMed  Google Scholar 

  38. Leech MJ, May K, Hallard D, et al. Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Mol Biol 1998; 38: 765–774.

    Google Scholar 

  39. Kholi A, Leech M, Vain P, et al. Transgene organisation in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot-spots. Proc Natl Acad Sci USA 1998; 95: 7203–7208.

    Article  Google Scholar 

  40. Stoger E, Williams S, Keen D, et al. Molecular characteristics of transgenic what and the effect on transgene expression. Transgenic Res. 1998; 7: 463–471.

    Article  CAS  Google Scholar 

  41. Songstad DD, De Luca V, Brisson N, et al. High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol 1990; 94: 1410–1413.

    Article  PubMed  CAS  Google Scholar 

  42. Poulsen C, Goddijn OJM, Hoge JHC, et al. Anthranilate synthase and chorismate mutase activities in transgenic tobacco plants overexpressing tryptophan decarboxylase from Catharanthus roseus. Transgenic Res 1994; 3: 43–49.

    Article  CAS  Google Scholar 

  43. Lagrimini LM, Bradford S, Rothstein S. Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 1990; 2: 7–18.

    PubMed  CAS  Google Scholar 

  44. McKnight TD, Bergey DR, Burnett RJ, et al. Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 1991; 185: 148–152.

    Article  CAS  Google Scholar 

  45. Hallard D, van der Heijden R, Verpoorte R, et al. Suspension cultured transgenic cells of Nicotiana tabacum expressing the tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon feeding of secologanin. Plant Cell Rep. 1997; 17: 50–54.

    Article  CAS  Google Scholar 

  46. Odell JT, Nagy F, Chua N-H. Variability in 35S promoter expression between independent transformants. In: Key L, McIntosh L, (Ed) Plant Gene systems and their Biology, Alan R. Liss, New York 1987: 62: 321–329.

    Google Scholar 

  47. Peach C, Velten J. Transgene expression variability (position effects) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 1991; 17: 49–60.

    Article  PubMed  CAS  Google Scholar 

  48. Longstaff M, Brigneti G, Boccard F, et al. Extreme resistance to potato X virus infection in plants expressing a modified component of the putative viral replicase. EMBO J 1993; 12: 379–386.

    PubMed  CAS  Google Scholar 

  49. Mannerlof M, Tenning P. Variability of gene expression in transgenic tobacco. Euphytica 1997; 98: 133–139.

    Article  Google Scholar 

  50. Lewin B. Chromatin and gene expression: constant questions, but changing answers. Cell 1994; 79: 397–406.

    Article  PubMed  CAS  Google Scholar 

  51. Allen GC, Hall G, Michalowski S, et al. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 1996; 8: 899–913.

    PubMed  CAS  Google Scholar 

  52. Elmayan T, Vaucheret H. Single copies of a 35S-driven transgene can undergo post-transcriptional silencing at each generation or can be transcriptionally inactivated in trans by a 35S silencer. Plant J 1996; 9: 787–797.

    Article  CAS  Google Scholar 

  53. Meyer P, Heidmann I, Niedenhof I. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 1993; 4: 89–100.

    Article  PubMed  CAS  Google Scholar 

  54. Park Y.-D, Papp I, Moscone EA, et al. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 1996; 9: 183–194.

    Article  PubMed  CAS  Google Scholar 

  55. Baulcombe D, English JJ. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr Opin Biotechnol 1996; 7: 173–180.

    Article  CAS  Google Scholar 

  56. Baulcombe DC. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 1996; 32: 79–88.

    Article  PubMed  CAS  Google Scholar 

  57. Tomes DT, Weissinger AK, Ross M, et al. Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol Biol 1990; 14: 261–268.

    Article  PubMed  CAS  Google Scholar 

  58. Elkind Y, Edwards R, Mavandad M, et al. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonialyase gene. Proc Natl Acad Sci USA 1990; 87: 9057–9061.

    Article  PubMed  CAS  Google Scholar 

  59. Howles, PA, Sewal VJH, Paivo NL, et al. Overexpression of L-phenylalanine ammonia lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol 1996; 112: 1617–1624.

    PubMed  CAS  Google Scholar 

  60. Bate NJ, Orr J, Meromi NW, et al. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci USA 1994; 91: 7608–7612.

    Article  PubMed  CAS  Google Scholar 

  61. Palauqui J-C, Elmayan T, de Borne FD et al. Frequencies, timing and spatial patterns of co-supression of nitrate reductase and nitrite reductase in transgenic tobacco. Plant Physiol 1996; 112: 1447–1456.

    PubMed  CAS  Google Scholar 

  62. Moreno PRH, van der Heijden R, Verpoorte R. Cell and tissue cultures of Catharanthus roseus: a literature survey. II. Dating from 1988 to 1993. Plant Cell Tissue Organ Culture 1995; 42: 1–25.

    Article  Google Scholar 

  63. van der Heijden R, Verpoorte R, ten Hoopen HJG. Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tissue Organ Culture 1989; 18: 231–280.

    Article  Google Scholar 

  64. Constabel F, Gaudet-LaPraire P, Kurz WGW, et al. Alkaloid production in Catharanthus roseus cell cultures XII. Biosynthetic capacity of callus from original explants and regenerated shoots. Plant Cell Rep 1982; 1: 139–142.

    Article  Google Scholar 

  65. van der Fits L, Memelink J. Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol Biol 1997; 33: 943–946.

    Article  PubMed  Google Scholar 

  66. Goddijn OJM, Lohman FP, de Kam RJ, et al. Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of the tdc-gusA gene fusions in Nicotiana tabacum. Mol Gen Genet 1994; 242: 217–225.

    Article  PubMed  CAS  Google Scholar 

  67. Pasquali G. Regulation of the terpenoid indole alkaloid biosynthetic gene strictosidine synthase from Catharanthus roseus. PhD thesis 1994; University of Leiden, The Netherlands.

    Google Scholar 

  68. Cardoso MIL, Meijer AH, Rueb S, et al. A promoter region that controls basal and elicitor-inducible expression levels of the NADH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1. Mol Gen Genet 1997; 256: 674–681.

    PubMed  CAS  Google Scholar 

  69. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: 13-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987; 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  70. Hermans-Lokkerbol A, Verpoorte R. Purification of secologanin from Lonicera tatarica extracts using RLCC. Planta Medica 1987; 546–548.

    Google Scholar 

  71. Tanahashi T, Nagakura N, Inouye H, et al. Radioimmunoassay for the determination of loganin and the biotransformation of loganin to secologanin by plant cell cultures. Phytochemistry 1984; 23: 1917–1922.

    Article  CAS  Google Scholar 

  72. Georges D, Chenieux J-C, Ochatt SJ. Plant regeneration from aged-callus of the woody ornamental species Lonicera japonica cv. “Hall’s Prolific”. Plant Cell Rep 1993; 13: 91–94.

    Article  CAS  Google Scholar 

  73. Hadi MZ, McMullen MD, Finer H. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 1996; 15: 500–505.

    Article  CAS  Google Scholar 

  74. Komari T, Hiei Y, Saito Y, et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 1996; 10: 165–174.

    Article  PubMed  CAS  Google Scholar 

  75. Hamilton CM, Frary A, Lewis C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 1996; 93: 9975–9979.

    Article  PubMed  CAS  Google Scholar 

  76. Hansen G, Shillito RD, Chilton M-D. T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 1997; 94: 11726–11730.

    Article  PubMed  CAS  Google Scholar 

  77. Vasil V, Castillo AM, Fromm ME et al. Herbicide resistant fertile transgenic whaet plants obtained by microprojectile bombardment of regenerable callus. Bio/Technology 1992; 10: 667–674.

    Article  CAS  Google Scholar 

  78. Register JC, Peterson DJ, Bell PJ et al. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 1994; 25: 951–961.

    Article  PubMed  CAS  Google Scholar 

  79. Hashimoto T, Yamada Y. Alkaloid biogenesis:molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 1994; 45: 257–285.

    Article  CAS  Google Scholar 

  80. Grotewold E, Drummond BJ, Bowen B, et al. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating flavanoid biosynthetic gene subset. Cell 1994; 76: 543–553.

    Article  PubMed  CAS  Google Scholar 

  81. Sablowski RWM, Moyano E, Culianez-Macia FA et al. A flower-specific Myb protien activates transcription of phenylpropanoid biosynthetic genes. EMBO J 1994; 13: 128–137.

    PubMed  CAS  Google Scholar 

  82. Tamagnone L, Merida A, Parr A, et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 1998; 10: 135–154.

    PubMed  CAS  Google Scholar 

  83. Martin C, Paz-Ares J. MYB transcription factors in plants. TIG 1997; 13: 67–73.

    Article  PubMed  CAS  Google Scholar 

  84. Pasquali G, Goddijn, OJM, de Waal A, et al. Coordinated regulaion of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 1992; 18: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  85. Grotewold E, Chamberlin M, Snook M, et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 1998; 10: 721–740.

    PubMed  CAS  Google Scholar 

  86. Lloyd AM, Walbot V, Davis RW. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl. Science 1992; 258: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  87. Kim SW, Song NH, Jung KH, et al. High frequency plant regeneration from anther-derived cell suspension cultures via somatic embryogenesis in Catharanthus roseus. Plant Cell Rep 1994; 13: 319–322.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leech, M.J. et al. (2000). Particle Gun Methodology as a Tool in Metabolic Engineering. In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics